Home
Class 12
MATHS
I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxc...

`I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx`,
`I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx`. Then

A

`I_(2)=I_(3)=I_(4)=0,I_(1)!=0`

B

`I_(1)=I_(2)=I_(3)=0,I_(4)!=0`

C

`I_(1)=I_(3)=I_(4)=0,I_(2)!=0`

D

`I_(1)=I_(2)=I_(3)=0,I_(4)!=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1, I_2, I_3, \) and \( I_4 \) and find the relationships between them. ### Step 1: Evaluate \( I_1 \) We start with the integral: \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \] Using the substitution \( x = \frac{\pi}{2} - t \), we have: \[ \sin x = \cos t \quad \text{and} \quad \cos x = \sin t \] Thus, \[ I_1 = \int_{\frac{\pi}{2}}^0 \frac{\cos t - \sin t}{1 + \cos t \sin t} (-dt) = \int_0^{\frac{\pi}{2}} \frac{\cos t - \sin t}{1 + \cos t \sin t} \, dt \] Now, we can rewrite \( I_1 \): \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \sin x \cos x} \, dx \] Adding these two expressions for \( I_1 \): \[ 2I_1 = \int_0^{\frac{\pi}{2}} \frac{(\sin x - \cos x) + (\cos x - \sin x)}{1 + \sin x \cos x} \, dx = 0 \] Thus, we find: \[ I_1 = 0 \] ### Step 2: Evaluate \( I_2 \) Next, we evaluate: \[ I_2 = \int_0^{2\pi} \cos^6 x \, dx \] Using the periodicity of cosine, we can write: \[ I_2 = 2 \int_0^{\pi} \cos^6 x \, dx \] Using the reduction formula or known integrals, we find: \[ \int_0^{\pi} \cos^6 x \, dx = \frac{5\pi}{16} \] Thus, \[ I_2 = 2 \cdot \frac{5\pi}{16} = \frac{5\pi}{8} \] ### Step 3: Evaluate \( I_3 \) Now, we evaluate: \[ I_3 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \, dx \] Since \( \sin^3 x \) is an odd function, we have: \[ I_3 = 0 \] ### Step 4: Evaluate \( I_4 \) Finally, we evaluate: \[ I_4 = \int_0^1 \ln\left(\frac{1}{x} - 1\right) \, dx \] This can be rewritten as: \[ I_4 = \int_0^1 \ln\left(\frac{1-x}{x}\right) \, dx = \int_0^1 \ln(1-x) \, dx - \int_0^1 \ln(x) \, dx \] Both integrals can be evaluated: \[ \int_0^1 \ln(1-x) \, dx = -1 \quad \text{and} \quad \int_0^1 \ln(x) \, dx = -1 \] Thus, \[ I_4 = -1 - (-1) = 0 \] ### Summary of Results Now we summarize our results: - \( I_1 = 0 \) - \( I_2 = \frac{5\pi}{8} \) - \( I_3 = 0 \) - \( I_4 = 0 \) ### Conclusion From our evaluations, we conclude: - \( I_1 = I_3 = I_4 = 0 \) - \( I_2 \neq 0 \)

To solve the problem, we need to evaluate the integrals \( I_1, I_2, I_3, \) and \( I_4 \) and find the relationships between them. ### Step 1: Evaluate \( I_1 \) We start with the integral: \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2)sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n I_2=I_3=I_4=0,I_1!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_4=I_3=0,I_2!=0

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_(0)^(pi)(x)/(1+sinx)dx .

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-(1//2)x^(2))dx . The greatest of these integrals, is

int_(0)^(pi//4)(dx)/((1+cos2x))

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of int(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes gre...

    Text Solution

    |

  2. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  3. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  4. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  5. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  6. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  7. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  8. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  9. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  10. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  11. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  12. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  13. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  14. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  15. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  16. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  17. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  18. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  19. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  20. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |