Home
Class 12
MATHS
Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A...

Given `int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A`. Then the value of the definite integral `int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx` is equal to

A

`1/2A`

B

`(pi)/2-A`

C

`(pi)/4-1/2A`

D

`(pi)/2+A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the definite integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx. \] We are also given that \[ A = \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \sin x + \cos x}. \] ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] Let’s apply this property to our integral \(I\): \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin(\frac{\pi}{2} - x)}{1 + \sin(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} - x)} \, dx. \] ### Step 2: Simplify the integral Using the identities \(\sin(\frac{\pi}{2} - x) = \cos x\) and \(\cos(\frac{\pi}{2} - x) = \sin x\), we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos x + \sin x} \, dx. \] ### Step 3: Add the two integrals Now we have two expressions for \(I\): 1. \(I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx\) 2. \(I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin x + \cos x} \, dx\) Adding these two integrals gives: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\sin x + \cos x}{1 + \sin x + \cos x} \, dx. \] ### Step 4: Rewrite the integral We can separate the integral: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\sin x + \cos x + 1 - 1}{1 + \sin x + \cos x} \, dx. \] This can be rewritten as: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin x + \cos x} \, dx - \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin x + \cos x} \, dx. \] ### Step 5: Substitute the known integral From the problem statement, we know: \[ \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \sin x + \cos x} = A. \] Thus, we can write: \[ 2I = A. \] ### Step 6: Solve for \(I\) Dividing both sides by 2, we find: \[ I = \frac{A}{2}. \] ### Conclusion The value of the definite integral \[ \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx = \frac{A}{2}. \]

To solve the problem, we need to evaluate the definite integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x + \cos x} \, dx. \] We are also given that ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

Evaluate the definite integrals int_0^(pi/4)(sinx+cosx)/(9+16sin2x)dx

int(x+sinx)/(1+cosx) dx is equal to

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of int0^(2pi)[2 sin x] dx, where [.] represents the greate...

    Text Solution

    |

  2. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  3. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  4. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  5. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  6. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  7. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  8. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  9. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  10. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  11. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  12. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  13. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  14. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  15. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  16. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  17. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  18. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  19. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  20. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |