Home
Class 12
MATHS
"I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)...

`"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x)))` `"and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s"` 2 (b) `1/2` (c) 1 (d) `-1/2`

A

`2`

B

`1/2`

C

`1`

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the ratio \( \frac{I_1}{I_2} \). ### Step 1: Define the integrals We have: \[ I_1 = \int_{-100}^{101} \frac{dx}{(5 + 2x - 2x^2)(1 + e^{2 - 4x})} \] \[ I_2 = \int_{-100}^{101} \frac{dx}{5 + 2x - 2x^2} \] ### Step 2: Simplifying \( I_1 \) To simplify \( I_1 \), we can use a substitution. Let's consider the substitution \( x = 1 - t \). Then \( dx = -dt \), and the limits change as follows: - When \( x = -100 \), \( t = 101 \) - When \( x = 101 \), \( t = -100 \) Thus, we can rewrite \( I_1 \): \[ I_1 = \int_{101}^{-100} \frac{-dt}{(5 + 2(1 - t) - 2(1 - t)^2)(1 + e^{2 - 4(1 - t)})} \] ### Step 3: Evaluate the denominator of \( I_1 \) Now we simplify the denominator: \[ 5 + 2(1 - t) - 2(1 - t)^2 = 5 + 2 - 2t - 2(1 - 2t + t^2) = 5 + 2 - 2t - 2 + 4t - 2t^2 = 3 + 2t - 2t^2 \] And for the exponential term: \[ 1 + e^{2 - 4(1 - t)} = 1 + e^{2 - 4 + 4t} = 1 + e^{-2 + 4t} \] ### Step 4: Rewrite \( I_1 \) Now we can rewrite \( I_1 \): \[ I_1 = \int_{-100}^{101} \frac{dt}{(3 + 2t - 2t^2)(1 + e^{-2 + 4t})} \] ### Step 5: Combine \( I_1 \) and \( I_2 \) Notice that: \[ I_1 + I_1 = \int_{-100}^{101} \left( \frac{1}{(5 + 2x - 2x^2)(1 + e^{2 - 4x})} + \frac{1}{(3 + 2t - 2t^2)(1 + e^{-2 + 4t})} \right) dx \] This means: \[ 2I_1 = I_2 \] ### Step 6: Find the ratio \( \frac{I_1}{I_2} \) From the equation \( 2I_1 = I_2 \), we can express \( I_1 \) in terms of \( I_2 \): \[ I_1 = \frac{1}{2} I_2 \] Thus, the ratio is: \[ \frac{I_1}{I_2} = \frac{1}{2} \] ### Final Answer The answer is: \[ \frac{I_1}{I_2} = \frac{1}{2} \]

To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the ratio \( \frac{I_1}{I_2} \). ### Step 1: Define the integrals We have: \[ I_1 = \int_{-100}^{101} \frac{dx}{(5 + 2x - 2x^2)(1 + e^{2 - 4x})} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s" (a)2 (b) 1/2 (c) 1 (d) -1/2

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)=underset(0)overset(oo)int x^(2)(dx)/(1+x^(4))"then"n (I_(1))/(I_(2))=

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

solve I=int(2^((1)/(x)))/(x^(2))dx

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

if ""I_1=int_(-a)^(2a)(xdx)/(x^2+p^2),I_2=int_a^(2a)(xdx)/(x^2+p^2) then find the value of (12)/pi(I_1-I_2)

If f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

Let f be a positive function. Let I_1=int_(1-k)^k xf([x(1-x)])dx , I_2=int_(1-k)^kf[x(1-x)]dx ,w h e r e2k-1> 0. T h e n(I_1)/(I_2)i s 2 (b) k (c) 1/2 (d) 1

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. I(1)=int(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I(2)=int(0)^(2pi)cos^(...

    Text Solution

    |

  2. Given int(0)^(pi//2)(dx)/(1+sinx+cosx)=A. Then the value of the defini...

    Text Solution

    |

  3. "I f"I1=int(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I2=int(-10...

    Text Solution

    |

  4. int(0)^(oo)(xdx)/((1+x)(1+x^(2)))

    Text Solution

    |

  5. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  6. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  7. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  8. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  9. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  10. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  11. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  12. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  13. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  14. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  15. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  16. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  17. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  18. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  19. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  20. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |