Home
Class 12
MATHS
If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(...

If `f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx` and `I_2=int_(f(-a))^(f(a)) g(x(1-x))dx`, then the value of `(I_2)/(I_1)` is (a) `-1` (b) `-2` (c) 2 (d) 1

A

`-1`

B

`-2`

C

`2`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the ratio \( \frac{I_2}{I_1} \). ### Step 1: Define the function and calculate \( f(a) \) and \( f(-a) \) Given: \[ f(x) = \frac{e^x}{1 + e^x} \] Calculating \( f(a) \): \[ f(a) = \frac{e^a}{1 + e^a} \] Calculating \( f(-a) \): \[ f(-a) = \frac{e^{-a}}{1 + e^{-a}} = \frac{1}{e^a + 1} \] ### Step 2: Find the sum \( f(a) + f(-a) \) Now, we will find \( f(a) + f(-a) \): \[ f(a) + f(-a) = \frac{e^a}{1 + e^a} + \frac{1}{e^a + 1} = \frac{e^a + 1}{1 + e^a} = 1 \] ### Step 3: Express \( f(-a) \) in terms of \( f(a) \) Let: \[ f(a) = \alpha \quad \text{and} \quad f(-a) = 1 - \alpha \] ### Step 4: Evaluate \( I_1 \) The integral \( I_1 \) is defined as: \[ I_1 = \int_{f(-a)}^{f(a)} x g(x(1-x)) \, dx \] Using the property of definite integrals, we can change the variable: \[ I_1 = \int_{\alpha}^{1 - \alpha} x g(x(1-x)) \, dx \] ### Step 5: Evaluate \( I_2 \) The integral \( I_2 \) is defined as: \[ I_2 = \int_{f(-a)}^{f(a)} g(x(1-x)) \, dx \] ### Step 6: Use the property of integrals Using the substitution \( x = 1 - t \): \[ I_1 = \int_{\alpha}^{1 - \alpha} (1 - t) g((1 - t)t) \, dt \] This leads to: \[ I_1 = \int_{\alpha}^{1 - \alpha} (1 - t) g(t(1-t)) \, dt \] ### Step 7: Relate \( I_1 \) and \( I_2 \) Now, we can express \( I_2 \) in terms of \( I_1 \): \[ I_2 = \int_{\alpha}^{1 - \alpha} g(x(1-x)) \, dx \] From the properties of integrals, we find that: \[ 2I_1 = I_2 \] ### Step 8: Calculate the ratio \( \frac{I_2}{I_1} \) Thus, we have: \[ \frac{I_2}{I_1} = 2 \] ### Final Answer The value of \( \frac{I_2}{I_1} \) is: \[ \boxed{2} \]

To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the ratio \( \frac{I_2}{I_1} \). ### Step 1: Define the function and calculate \( f(a) \) and \( f(-a) \) Given: \[ f(x) = \frac{e^x}{1 + e^x} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

For x in R and a continuous function f, let I_1=int_(sin^2t)^(1+cos^2t)xf{x(2-x)}dx and I_2=int_(sin^2t)^(1+cos^2t)f{x(2-x)}dx .Then (I_1)/(I_2) is (a) -1 (b) 1 (c) 2 (d) 3

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s" (a)2 (b) 1/2 (c) 1 (d) -1/2

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If int((x-1)/(x^2))e^x dx=f(x)e^x+c , then write the value of f(x) .

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  2. Let f be a positive function. If I1 = int(1-k)^k x f[x(1-x)]\ dx and I...

    Text Solution

    |

  3. If f(x)=(e^x)/(1+e^x), I1=int(f(-a))^(f(a))xg(x(1-x)dx and I2=int(f(-a...

    Text Solution

    |

  4. The value of int(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

    Text Solution

    |

  5. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  6. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  7. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  8. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  9. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  10. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  11. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  12. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  13. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  14. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  15. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  16. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |

  17. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  18. Evaluate : int0^pi(xtanx)/(secx+tanx)dx

    Text Solution

    |

  19. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |