Home
Class 12
MATHS
Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1...

`Ifint_0^1cot^(-1)(1-x+x^2)dx=lambdaint_0^1tan^(-1)x dx ,t h e nlambdai se q u a lto` 1 (b) 2 (c) 3 (d) 4

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \int_0^1 \cot^{-1}(1 - x + x^2) \, dx \] and relate it to \[ \lambda \int_0^1 \tan^{-1}(x) \, dx. \] ### Step 1: Rewrite the cotangent inverse We know that \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right). \] Thus, we can rewrite the integral as: \[ \int_0^1 \cot^{-1}(1 - x + x^2) \, dx = \int_0^1 \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx. \] ### Step 2: Simplify the expression inside the tangent inverse Now, we can express \(1\) as \(x + (1 - x)\): \[ 1 - x + x^2 = x^2 + (1 - x). \] So we have: \[ \int_0^1 \tan^{-1}\left(\frac{1}{x^2 + (1 - x)}\right) \, dx. \] ### Step 3: Use the property of definite integrals Using the property of definite integrals, we know: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] In our case, we can apply this property: \[ \int_0^1 \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx = \int_0^1 \tan^{-1}\left(\frac{1}{1 - (1 - x) + (1 - x)^2}\right) \, dx. \] ### Step 4: Combine the integrals Now, we can combine the two integrals: \[ \int_0^1 \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx + \int_0^1 \tan^{-1}\left(\frac{1}{x^2 + (1 - x)}\right) \, dx = \lambda \int_0^1 \tan^{-1}(x) \, dx. \] ### Step 5: Recognize the symmetry Notice that both integrals on the left-hand side are equal. Therefore, we can write: \[ 2 \int_0^1 \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx = \lambda \int_0^1 \tan^{-1}(x) \, dx. \] ### Step 6: Solve for \(\lambda\) From the above equation, we can equate the coefficients: \[ \lambda = 2. \] Thus, the value of \(\lambda\) is: \[ \boxed{2}. \]

To solve the problem, we need to evaluate the integral \[ \int_0^1 \cot^{-1}(1 - x + x^2) \, dx \] and relate it to ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Ifint_0^1cot^(-1)(1-x+x^2)dx=lambdaint_0^1tan^(-1)x dx ,then lambda is equal to 1 (b) 2 (c) 3 (d) 4

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

intsin^(-1)((2x)/(1+x^2))dx is e q u a lto

If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b ,t h e n a is e q u a l 1/3 (b) 2/3 (c) -1/3 (d0 -2/3

Ifint_0^(npi)f(cos^2x)dx=kint_0^pif(cos^2x)dx ,t h e nfin dt h ev a l u ekdot

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dx . Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

If 2int_0^1 tan^(-1)x dx= int_0^1 cot^(-1)(1-x+x^2) dx then int_0^1 tan^(-1)(1-x+x^2) dx=

If int_0^1 xe^(x^2) dx=k int_0^1 e^(x^2) dx , then (A) kgt1 (B) 0ltklt1 (C) k=1 (D) none of these

Let u=int_0^1("ln"(x+1))/(x^2+1)dx a n d v=int_0^(pi/2)ln(sin2x)dx ,t h e n (a) u=-pi/2ln2 (b) 4u+v=0 (c) u+4v=0 (d) u=pi/8ln2

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of the definite integral int0^(pi/2)sqrt(tanx)dx is sqrt(...

    Text Solution

    |

  2. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  3. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  4. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  5. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  6. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  7. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  8. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  9. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  10. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  11. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  12. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |

  13. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  14. Evaluate : int0^pi(xtanx)/(secx+tanx)dx

    Text Solution

    |

  15. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  18. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  19. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  20. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |