Home
Class 12
MATHS
The value of the definite integral int(-...

The value of the definite integral `int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx` equals

A

`pi`

B

`(3pi)/4`

C

`(pi)/4`

D

`(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx, \] we can use the property of definite integrals and symmetry. ### Step 1: Substitute \( x \) with \( -x \) First, we will consider the substitution \( x = -x \): \[ I = \int_{-1}^{1} (1-x)^{\frac{1}{2}} (1+x)^{\frac{3}{2}} \, dx. \] ### Step 2: Write the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx \) (original integral) 2. \( I = \int_{-1}^{1} (1-x)^{\frac{1}{2}} (1+x)^{\frac{3}{2}} \, dx \) (after substitution) ### Step 3: Add the two integrals Now, let's add these two integrals: \[ 2I = \int_{-1}^{1} \left[ (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} + (1-x)^{\frac{1}{2}} (1+x)^{\frac{3}{2}} \right] \, dx. \] ### Step 4: Factor out common terms We can factor out the common terms: \[ 2I = \int_{-1}^{1} \left[ (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \left( (1-x) + (1+x) \right) \right] \, dx. \] ### Step 5: Simplify the expression inside the integral Now simplify the expression inside the integral: \[ (1-x) + (1+x) = 2. \] Thus, we have: \[ 2I = \int_{-1}^{1} 2 (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \, dx. \] ### Step 6: Simplify further This simplifies to: \[ I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \, dx. \] ### Step 7: Recognize the integral as a standard form The expression \( (1+x)^{\frac{1}{2}} (1-x)^{\frac{1}{2}} \) can be rewritten as: \[ \sqrt{(1+x)(1-x)} = \sqrt{1-x^2}. \] Thus, we have: \[ I = \int_{-1}^{1} \sqrt{1-x^2} \, dx. \] ### Step 8: Use the known result of the integral The integral \( \int_{-1}^{1} \sqrt{1-x^2} \, dx \) represents the area of a semicircle with radius 1, which is: \[ \frac{\pi}{2}. \] ### Final Result Thus, the value of the definite integral is: \[ I = \frac{\pi}{2}. \]

To solve the definite integral \[ I = \int_{-1}^{1} (1+x)^{\frac{1}{2}} (1-x)^{\frac{3}{2}} \, dx, \] we can use the property of definite integrals and symmetry. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

Evaluate the definite integrals int-1 1(x+1)dx

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

Evaluate the definite integrals int_2^3(dx)/(x^2-1)

Evaluate the definite integrals int_0^1 (dx)/(1-x^2)

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

Evaluate the definite integrals int_2^3 1/x dx

Evaluate the definite integrals int_2^ 3(xdx)/(x^2+1)

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. f(x)>0AAx in R and is bounded. If lim(n->oo)[int0^a(f(x)dx)/(f(x)+f(a...

    Text Solution

    |

  2. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  3. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  4. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  5. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  6. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  7. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  8. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  9. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  10. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  11. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |

  12. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  13. Evaluate : int0^pi(xtanx)/(secx+tanx)dx

    Text Solution

    |

  14. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  17. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  18. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  19. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  20. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |