Home
Class 12
MATHS
The value of the integral int(-3pi//4)^(...

The value of the integral `int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx` is

A

`0`

B

`1`

C

`2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sin x + \cos x}{e^{x - \frac{\pi}{4}} + 1} \, dx, \] we will follow these steps: ### Step 1: Multiply and Divide by \(\sqrt{2}\) We start by multiplying and dividing the numerator by \(\sqrt{2}\): \[ I = \int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sqrt{2}(\sin x + \cos x)}{\sqrt{2}(e^{x - \frac{\pi}{4}} + 1)} \, dx. \] ### Step 2: Rewrite the Numerator Notice that \(\frac{1}{\sqrt{2}} = \sin\left(\frac{\pi}{4}\right)\) and \(\frac{1}{\sqrt{2}} = \cos\left(\frac{\pi}{4}\right)\). Thus, we can rewrite the numerator: \[ \sin x + \cos x = \sqrt{2}\left(\sin\left(\frac{\pi}{4}\right) \sin x + \cos\left(\frac{\pi}{4}\right) \cos x\right) = \sqrt{2} \cos\left(x - \frac{\pi}{4}\right). \] So we have: \[ I = \int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sqrt{2} \cos\left(x - \frac{\pi}{4}\right)}{e^{x - \frac{\pi}{4}} + 1} \, dx. \] ### Step 3: Change of Variables Let \(t = x - \frac{\pi}{4}\). Then, \(dx = dt\), and we need to change the limits: - When \(x = -\frac{3\pi}{4}\), \(t = -\frac{3\pi}{4} - \frac{\pi}{4} = -\pi\). - When \(x = \frac{5\pi}{4}\), \(t = \frac{5\pi}{4} - \frac{\pi}{4} = \pi\). Thus, the integral becomes: \[ I = \int_{-\pi}^{\pi} \frac{\sqrt{2} \cos t}{e^t + 1} \, dt. \] ### Step 4: Use the Property of Definite Integrals Using the property of definite integrals, we know that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In our case, we have: \[ I = \int_{-\pi}^{\pi} \frac{\sqrt{2} \cos(-t)}{e^{-t} + 1} \, dt = \int_{-\pi}^{\pi} \frac{\sqrt{2} \cos t}{e^{-t} + 1} \, dt. \] ### Step 5: Combine the Two Integrals Now we have two expressions for \(I\): 1. \(I = \int_{-\pi}^{\pi} \frac{\sqrt{2} \cos t}{e^t + 1} \, dt\) (Equation 1) 2. \(I = \int_{-\pi}^{\pi} \frac{\sqrt{2} \cos t}{e^{-t} + 1} \, dt\) (Equation 2) Adding these two equations: \[ 2I = \int_{-\pi}^{\pi} \left( \frac{\sqrt{2} \cos t}{e^t + 1} + \frac{\sqrt{2} \cos t}{e^{-t} + 1} \right) dt. \] ### Step 6: Simplify the Integral The expression simplifies as follows: \[ \frac{\sqrt{2} \cos t}{e^t + 1} + \frac{\sqrt{2} \cos t}{e^{-t} + 1} = \sqrt{2} \cos t \cdot \frac{(e^{-t} + 1) + (e^t + 1)}{(e^t + 1)(e^{-t} + 1)} = \sqrt{2} \cos t \cdot \frac{e^t + e^{-t} + 2}{(e^t + 1)(e^{-t} + 1)}. \] ### Step 7: Evaluate the Integral This integral evaluates to zero because the integrand is an odd function over the symmetric interval \([- \pi, \pi]\): \[ \int_{-\pi}^{\pi} \sin t \, dt = 0. \] Thus, we conclude: \[ 2I = 0 \implies I = 0. \] ### Final Answer The value of the integral is \[ \boxed{0}. \]

To solve the integral \[ I = \int_{-\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{\sin x + \cos x}{e^{x - \frac{\pi}{4}} + 1} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(e^(x-pi/4)+1))dx (A) 0 (B) 1 (C) 2 (D) none of these

The value of the integral int_(-pi//4)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate the following integral: int_(-pi//4)^(pi//4)|tanx|dx

Evaluate the following integral: int_(-pi//4)^(pi//4)|tanx|dx

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Ifint0^1cot^(-1)(1-x+x^2)dx=lambdaint0^1tan^(-1)x dx ,t h e nlambdai s...

    Text Solution

    |

  2. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  3. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  4. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  5. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  6. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  7. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  8. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  9. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  10. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |

  11. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  12. Evaluate : int0^pi(xtanx)/(secx+tanx)dx

    Text Solution

    |

  13. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  16. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  17. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  18. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  19. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  20. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |