Home
Class 12
MATHS
IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I...

`IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx` `I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n` `I_1=I_2> I_3` (b) `I_3> I_1=I_2` `I_1=I_2=I_3` (d) none of these

A

`I_(1)=I_(2)gtI_(3)`

B

`I_(3)gtI_(1)=I_(2)`

C

`I_(1)=I_(2)=I_(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \(I_1\), \(I_2\), and \(I_3\) and compare their values. ### Step 1: Evaluate \(I_1\) Given: \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{1 + \cos^2 x} \, dx \] Using the property of definite integrals: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] we can rewrite \(I_1\) as: \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + \sin^2 x} \, dx \] This integral is exactly \(I_2\). ### Step 2: Show that \(I_1 = I_2\) Thus, we have: \[ I_1 = I_2 \] ### Step 3: Evaluate \(I_3\) Now, we evaluate \(I_3\): \[ I_3 = \int_0^{\frac{\pi}{2}} \frac{1 + 2 \cos^2 x \sin^2 x}{4 + 2 \cos^2 x \sin^2 x} \, dx \] ### Step 4: Add \(I_1\) and \(I_2\) Now, we add \(I_1\) and \(I_2\): \[ I_1 + I_2 = \int_0^{\frac{\pi}{2}} \left( \frac{\cos^2 x}{1 + \cos^2 x} + \frac{\sin^2 x}{1 + \sin^2 x} \right) \, dx \] Finding a common denominator: \[ = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x (1 + \sin^2 x) + \sin^2 x (1 + \cos^2 x)}{(1 + \cos^2 x)(1 + \sin^2 x)} \, dx \] Simplifying the numerator: \[ = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x + \cos^2 x \sin^2 x + \sin^2 x + \sin^2 x \cos^2 x}{(1 + \cos^2 x)(1 + \sin^2 x)} \, dx \] \[ = \int_0^{\frac{\pi}{2}} \frac{1 + 2 \cos^2 x \sin^2 x}{(1 + \cos^2 x)(1 + \sin^2 x)} \, dx \] ### Step 5: Relate \(I_1 + I_2\) to \(I_3\) Notice that: \[ I_1 + I_2 = \int_0^{\frac{\pi}{2}} \frac{1 + 2 \cos^2 x \sin^2 x}{(1 + \cos^2 x)(1 + \sin^2 x)} \, dx \] Now, we can express this as: \[ I_1 + I_2 = 2I_3 \] ### Step 6: Conclusion Since \(I_1 = I_2\), we have: \[ 2I_1 = 2I_3 \implies I_1 = I_3 \] Thus, we conclude: \[ I_1 = I_2 = I_3 \] ### Final Answer The correct option is: (c) \(I_1 = I_2 = I_3\) ---

To solve the problem, we need to evaluate the integrals \(I_1\), \(I_2\), and \(I_3\) and compare their values. ### Step 1: Evaluate \(I_1\) Given: \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{1 + \cos^2 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2

I=int(sin^2x)/(1+cos x)dx

If I_1=int_0^pixf(sin^3x+cos^2x)dxand I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , then relate I_1 and I_2

Evaluate: int_0^(pi//2)1/((a^2cos^2x+b^2sin^2x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  2. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  3. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  4. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  5. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  6. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  7. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  8. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |

  9. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  10. Evaluate : int0^pi(xtanx)/(secx+tanx)dx

    Text Solution

    |

  11. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  14. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  15. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  16. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  17. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  18. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  19. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  20. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |