Home
Class 12
MATHS
For x epsilonR, and a continuous functio...

For `x epsilonR`, and a continuous function `f` let `I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx` and `I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx`.
Then `(I_(1))/(I_(2))` is

A

`-1`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the ratio \( \frac{I_1}{I_2} \) where: \[ I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} x f(x(2 - x)) \, dx \] \[ I_2 = \int_{\sin^2 t}^{1 + \cos^2 t} f(x(2 - x)) \, dx \] ### Step 1: Use the property of definite integrals We will use the property of definite integrals which states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, \( a = \sin^2 t \) and \( b = 1 + \cos^2 t \). First, we calculate \( a + b \): \[ a + b = \sin^2 t + (1 + \cos^2 t) = \sin^2 t + 1 + \cos^2 t = 2 \] ### Step 2: Apply the property to \( I_1 \) Now, we apply this property to \( I_1 \): \[ I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} x f(x(2 - x)) \, dx \] Using the property, we can rewrite \( I_1 \): \[ I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} (2 - x) f((2 - x)(x)) \, dx \] ### Step 3: Combine the original and transformed integrals Now we can add the original \( I_1 \) and the transformed version: \[ 2I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} \left( x f(x(2 - x)) + (2 - x) f((2 - x)(x)) \right) \, dx \] ### Step 4: Simplify the expression This can be simplified as: \[ 2I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} 2 f(x(2 - x)) \, dx \] ### Step 5: Relate \( I_1 \) and \( I_2 \) Now, we can express this in terms of \( I_2 \): \[ 2I_1 = 2I_2 \] Dividing both sides by 2 gives: \[ I_1 = I_2 \] ### Step 6: Calculate the ratio Now, we can find the ratio: \[ \frac{I_1}{I_2} = \frac{I_2}{I_2} = 1 \] ### Final Answer Thus, the final answer is: \[ \frac{I_1}{I_2} = 1 \]

To solve the given problem, we need to evaluate the ratio \( \frac{I_1}{I_2} \) where: \[ I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} x f(x(2 - x)) \, dx \] \[ I_2 = \int_{\sin^2 t}^{1 + \cos^2 t} f(x(2 - x)) \, dx ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

For x in R and a continuous function f, let I_1=int_(sin^2t)^(1+cos^2t)xf{x(2-x)}dx and I_2=int_(sin^2t)^(1+cos^2t)f{x(2-x)}dx .Then (I_1)/(I_2) is (a) -1 (b) 1 (c) 2 (d) 3

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

I=int(sin^2x)/(1+cos x)dx

If I_(1)=int_(1-x)^(x) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(x) sin{x(1-x)}dx , then

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

I=int(sin2x-cos2x)^(2)dx

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  2. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  3. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  4. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  5. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  6. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |

  7. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  8. Evaluate : int0^pi(xtanx)/(secx+tanx)dx

    Text Solution

    |

  9. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  12. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  13. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  16. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  17. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  18. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  19. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  20. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |