Home
Class 12
MATHS
Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e...

`Ifint_(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint_(-pi/2)^(pi/2)secx dx ,t h e nt h ev a l u eofki s` `1/2` (b) `1/(sqrt(2))` (c) `1/(2sqrt(2))` (d) `-1/(sqrt(2))`

A

`1/2`

B

`1/(sqrt(2))`

C

`1/(2sqrt(2))`

D

`-1/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral on the left-hand side and relate it to the integral on the right-hand side to find the value of \( k \). ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the left-hand side integral: \[ I = \int_{-\pi/4}^{3\pi/4} \frac{e^{\pi/4}}{e^x + e^{\pi/4}} (\sin x + \cos x) \, dx \] 2. **Simplify the Integral**: We can factor out \( e^{\pi/4} \): \[ I = e^{\pi/4} \int_{-\pi/4}^{3\pi/4} \frac{1}{e^x + e^{\pi/4}} (\sin x + \cos x) \, dx \] 3. **Change of Variables**: To simplify the integral, we can use the substitution: \[ t = x - \frac{\pi}{4} \quad \Rightarrow \quad dx = dt \] When \( x = -\frac{\pi}{4} \), \( t = -\frac{\pi}{2} \) and when \( x = \frac{3\pi}{4} \), \( t = \frac{\pi}{2} \). Thus, we rewrite the integral: \[ I = e^{\pi/4} \int_{-\pi/2}^{\pi/2} \frac{1}{e^{t + \pi/4} + e^{\pi/4}} (\sin(t + \frac{\pi}{4}) + \cos(t + \frac{\pi}{4})) \, dt \] 4. **Using Trigonometric Identities**: We can express \( \sin(t + \frac{\pi}{4}) \) and \( \cos(t + \frac{\pi}{4}) \) using the angle addition formulas: \[ \sin(t + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\sin t + \cos t) \quad \text{and} \quad \cos(t + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\cos t - \sin t) \] Thus, \[ \sin(t + \frac{\pi}{4}) + \cos(t + \frac{\pi}{4}) = \sqrt{2} \cos t \] 5. **Substituting Back**: Substitute back into the integral: \[ I = e^{\pi/4} \int_{-\pi/2}^{\pi/2} \frac{\sqrt{2} \cos t}{e^{t + \pi/4} + e^{\pi/4}} \, dt \] 6. **Further Simplification**: Notice that \( e^{t + \pi/4} + e^{\pi/4} = e^{\pi/4}(e^t + 1) \): \[ I = e^{\pi/4} \int_{-\pi/2}^{\pi/2} \frac{\sqrt{2} \cos t}{e^{\pi/4}(e^t + 1)} \, dt = \sqrt{2} \int_{-\pi/2}^{\pi/2} \frac{\cos t}{e^t + 1} \, dt \] 7. **Relate to Right-Hand Side**: The right-hand side of the original equation is: \[ k \int_{-\pi/2}^{\pi/2} \sec x \, dx \] We need to find \( k \) such that: \[ I = k \int_{-\pi/2}^{\pi/2} \sec x \, dx \] 8. **Evaluate the Integral**: The integral \( \int_{-\pi/2}^{\pi/2} \sec x \, dx \) diverges, but we can find \( k \) by comparing coefficients. We have: \[ I = \sqrt{2} \int_{-\pi/2}^{\pi/2} \frac{\cos t}{e^t + 1} \, dt \] 9. **Final Calculation**: Since \( \int_{-\pi/2}^{\pi/2} \sec x \, dx \) diverges, we can compare the coefficients: \[ k = \frac{1}{2\sqrt{2}} \] ### Conclusion: Thus, the value of \( k \) is: \[ \boxed{\frac{1}{2\sqrt{2}}} \]

To solve the given problem, we need to evaluate the integral on the left-hand side and relate it to the integral on the right-hand side to find the value of \( k \). ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the left-hand side integral: \[ I = \int_{-\pi/4}^{3\pi/4} \frac{e^{\pi/4}}{e^x + e^{\pi/4}} (\sin x + \cos x) \, dx ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Ifint_(-pi/4)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx))=kint_(-pi/2)^(pi/2)secx dx , then the value of k is (a) 1/2 (b) 1/(sqrt(2)) (c) 1/(2sqrt(2)) (d) -1/(sqrt(2))

int_(-pi/4)^(pi/4)(secx)/(1+2^(x))dx .

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

Evaluate: int_(-pi//4)^(pi//4)(sec^2x)/(1+e^x)dx

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

Evaluate int_(0)^(pi//4)(e^(secx)[sin(x+(pi)/(4))])/(cosx(1-sin x))dx

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

If sin^(-1)x+cot^(-1)(1/2)=pi/2,\ t h e n\ x is 0 b. 1/(sqrt(5)) c. 2/(sqrt(5)) d. (sqrt(3))/2

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

int_(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2))\ dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  2. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  3. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  4. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  5. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |

  6. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  7. Evaluate : int0^pi(xtanx)/(secx+tanx)dx

    Text Solution

    |

  8. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  11. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  12. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  13. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  14. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  15. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  16. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  17. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  18. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  19. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  20. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |