Home
Class 12
MATHS
The value of int(0)^(4pi)log(e)|3sinx+3s...

The value of `int_(0)^(4pi)log_(e)|3sinx+3sqrt(3) cos x|dx` then the value of I is equal to

A

`pi log_(e)3`

B

`2 pi log_(e)3`

C

`4pilog_(e)3`

D

`8pilog_(e)3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{4\pi} \log_{e} |3 \sin x + 3 \sqrt{3} \cos x| \, dx \), we can follow these steps: ### Step 1: Simplify the Integral First, we can factor out the constant from the logarithm: \[ I = \int_{0}^{4\pi} \log_{e} (3 |\sin x + \sqrt{3} \cos x|) \, dx \] This can be simplified to: \[ I = \int_{0}^{4\pi} \log_{e} 3 \, dx + \int_{0}^{4\pi} \log_{e} |\sin x + \sqrt{3} \cos x| \, dx \] The first integral is straightforward: \[ \int_{0}^{4\pi} \log_{e} 3 \, dx = \log_{e} 3 \cdot (4\pi) = 4\pi \log_{e} 3 \] ### Step 2: Evaluate the Second Integral Now we need to evaluate: \[ J = \int_{0}^{4\pi} \log_{e} |\sin x + \sqrt{3} \cos x| \, dx \] Notice that \( \sin x + \sqrt{3} \cos x \) can be expressed in a different form. We can write: \[ \sin x + \sqrt{3} \cos x = 2 \left( \frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x \right) \] This can be rewritten using the angle addition formula: \[ \sin x + \sqrt{3} \cos x = 2 \sin \left( x + \frac{\pi}{3} \right) \] Thus, we have: \[ |\sin x + \sqrt{3} \cos x| = 2 |\sin \left( x + \frac{\pi}{3} \right)| \] Now substituting this back into the integral: \[ J = \int_{0}^{4\pi} \log_{e} (2 |\sin \left( x + \frac{\pi}{3} \right)|) \, dx \] This can be split into: \[ J = \int_{0}^{4\pi} \log_{e} 2 \, dx + \int_{0}^{4\pi} \log_{e} |\sin \left( x + \frac{\pi}{3} \right)| \, dx \] The first part evaluates to: \[ \int_{0}^{4\pi} \log_{e} 2 \, dx = \log_{e} 2 \cdot (4\pi) = 4\pi \log_{e} 2 \] ### Step 3: Evaluate the Integral of the Logarithm of Sine The integral of \( \log_{e} |\sin x| \) over a full period (from \( 0 \) to \( 2\pi \)) is known: \[ \int_{0}^{2\pi} \log_{e} |\sin x| \, dx = -2\pi \log_{e} 2 \] Thus, over \( 0 \) to \( 4\pi \): \[ \int_{0}^{4\pi} \log_{e} |\sin \left( x + \frac{\pi}{3} \right)| \, dx = 2 \int_{0}^{2\pi} \log_{e} |\sin x| \, dx = 2(-2\pi \log_{e} 2) = -4\pi \log_{e} 2 \] ### Step 4: Combine Everything Now, substituting back into \( J \): \[ J = 4\pi \log_{e} 2 - 4\pi \log_{e} 2 = 0 \] ### Step 5: Final Calculation of \( I \) Now we can find \( I \): \[ I = 4\pi \log_{e} 3 + J = 4\pi \log_{e} 3 + 0 = 4\pi \log_{e} 3 \] ### Final Answer Thus, the value of \( I \) is: \[ \boxed{4\pi \log_{e} 3} \]

To solve the integral \( I = \int_{0}^{4\pi} \log_{e} |3 \sin x + 3 \sqrt{3} \cos x| \, dx \), we can follow these steps: ### Step 1: Simplify the Integral First, we can factor out the constant from the logarithm: \[ I = \int_{0}^{4\pi} \log_{e} (3 |\sin x + \sqrt{3} \cos x|) \, dx \] This can be simplified to: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=kpiln7 , then the value of k is

The value of int_(0)^(16pi//3) |sinx|dx is

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi) x log sinx dx

The value of int_(0)^(pi)|cos x|^(3)dx is :

The value of int_(0)^(pi)abscosx^3dx is

The value of int_(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx , is

If int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the value of m is equal to

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

The value of int_(0)^((pi)/(3))log(1+sqrt3 tanx)dx is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  4. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  5. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  6. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  7. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  8. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  9. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  10. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  11. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  12. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  13. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  14. Evaluate int(o)^(2pi)[sin x]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  15. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  16. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  17. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  18. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  19. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  20. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |