Home
Class 12
MATHS
The value of int(0)^(pi)(|x|sin^(2)x)/(1...

The value of `int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx` is equal to

A

`pi//4`

B

`pi//2`

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{x \sin^2 x}{1 + 2 |\cos x| \sin x} \, dx \), we will follow a series of steps to simplify and evaluate it. ### Step 1: Set up the integral Let us denote the integral as: \[ I = \int_{0}^{\pi} \frac{x \sin^2 x}{1 + 2 |\cos x| \sin x} \, dx \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] For our integral, we have: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin^2(\pi - x)}{1 + 2 |\cos(\pi - x)| \sin(\pi - x)} \, dx \] Since \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we can simplify: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin^2 x}{1 - 2 \cos x \sin x} \, dx \] ### Step 3: Add the two expressions for \( I \) Now we will add the two expressions for \( I \): \[ 2I = \int_{0}^{\pi} \left( \frac{x \sin^2 x}{1 + 2 |\cos x| \sin x} + \frac{(\pi - x) \sin^2 x}{1 - 2 \cos x \sin x} \right) dx \] ### Step 4: Combine the fractions We will combine the fractions: \[ 2I = \int_{0}^{\pi} \sin^2 x \left( \frac{x(1 - 2 \cos x \sin x) + (\pi - x)(1 + 2 |\cos x| \sin x)}{(1 + 2 |\cos x| \sin x)(1 - 2 \cos x \sin x)} \right) dx \] This simplifies to: \[ 2I = \int_{0}^{\pi} \sin^2 x \left( \frac{\pi + 2 |\cos x| \sin x - 2x \cos x \sin x}{(1 + 2 |\cos x| \sin x)(1 - 2 \cos x \sin x)} \right) dx \] ### Step 5: Evaluate the integral Next, we can evaluate the integral: \[ I = \frac{1}{2} \int_{0}^{\pi} \sin^2 x \, dx \] Using the integral \( \int \sin^2 x \, dx = \frac{x}{2} - \frac{\sin(2x)}{4} + C \), we find: \[ \int_{0}^{\pi} \sin^2 x \, dx = \frac{\pi}{2} \] Thus, \[ I = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4} \] ### Step 6: Conclusion Therefore, the value of the integral is: \[ I = \frac{\pi}{4} \]

To solve the integral \( I = \int_{0}^{\pi} \frac{x \sin^2 x}{1 + 2 |\cos x| \sin x} \, dx \), we will follow a series of steps to simplify and evaluate it. ### Step 1: Set up the integral Let us denote the integral as: \[ I = \int_{0}^{\pi} \frac{x \sin^2 x}{1 + 2 |\cos x| \sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

The value of int_(0)^(pi//2)(asinx+bcosx)/(sinx+cosx)dx is equal to

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

The value of int_(0)^(pi//2)(cosxdx)/(1+cosx+sinx) is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. about to only mathematics

    Text Solution

    |

  2. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  3. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  4. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  5. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  6. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  7. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  8. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  9. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  10. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  11. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  12. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  13. Evaluate int(o)^(2pi)[sin x]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  14. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  15. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  16. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  17. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  18. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  19. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  20. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |