Home
Class 12
MATHS
If f(x) and g(x) are continuous function...

If `f(x)` and `g(x)` are continuous functions, then `int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx` is

A

depenent on `lamda`

B

a non zero constant

C

zero

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\ln \lambda}^{\ln \frac{1}{\lambda}} \frac{f\left(\frac{x^2}{4}\right) \left[f(x) - f(-x)\right]}{g\left(\frac{x^2}{4}\right) \left[g(x) + g(-x)\right]} \, dx, \] we will analyze the properties of the integrand and use the properties of definite integrals. ### Step 1: Change of Variables First, we will perform a change of variables. Let \( u = -x \). Then, \( du = -dx \). The limits change as follows: - When \( x = \ln \lambda \), \( u = -\ln \lambda \). - When \( x = \ln \frac{1}{\lambda} \), \( u = -\ln \frac{1}{\lambda} = \ln \lambda \). Thus, the integral becomes: \[ I = \int_{-\ln \lambda}^{-\ln \frac{1}{\lambda}} \frac{f\left(\frac{(-u)^2}{4}\right) \left[f(-u) - f(u)\right]}{g\left(\frac{(-u)^2}{4}\right) \left[g(-u) + g(u)\right]} (-du). \] This simplifies to: \[ I = \int_{-\ln \lambda}^{\ln \lambda} \frac{f\left(\frac{u^2}{4}\right) \left[f(-u) - f(u)\right]}{g\left(\frac{u^2}{4}\right) \left[g(-u) + g(u)\right]} du. \] ### Step 2: Analyze the Integrand Now, we analyze the integrand. Notice that: - \( f\left(\frac{u^2}{4}\right) \) is an even function since \( \frac{u^2}{4} \) is even. - \( f(-u) - f(u) \) is an odd function. - \( g\left(\frac{u^2}{4}\right) \) is also an even function. - \( g(-u) + g(u) \) is an even function. Thus, the entire integrand can be expressed as: \[ \frac{f\left(\frac{u^2}{4}\right) \cdot \text{(odd function)}}{g\left(\frac{u^2}{4}\right) \cdot \text{(even function)}} \] This shows that the integrand is an odd function because the product of an even function and an odd function is odd. ### Step 3: Evaluate the Integral Since \( I \) is the integral of an odd function over a symmetric interval \([-a, a]\), we have: \[ I = 0. \] ### Conclusion Thus, the value of the integral is \[ \boxed{0}. \]

To solve the integral \[ I = \int_{\ln \lambda}^{\ln \frac{1}{\lambda}} \frac{f\left(\frac{x^2}{4}\right) \left[f(x) - f(-x)\right]}{g\left(\frac{x^2}{4}\right) \left[g(x) + g(-x)\right]} \, dx, \] we will analyze the properties of the integrand and use the properties of definite integrals. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are two continuous functions defined on [-a,a] then the the value of int_(-a)^(a) {f(x)f+(-x) } {g(x)-g(-x)}dx is,

if f(x) and g(x) are continuous functions, fog is identity function, g'(b) = 5 and g(b) = a then f'(a) is

If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

If f(x) =x^(2)andg(x)=2x+1 are two real valued function, then evaluate : (f+g)(x),(f-g)(x),(fg)(x),(f)/(g)(x)

Statement-1: int_(0)^(1)(cos x)/(1+x^(2))dxgt(pi)/(4)cos1 Statement-2: If f(x) and g(x) are continuous on [a,b], then int_(a)^(b) f(x) g(x)dx=f(c )int_(a)^(b)g(x) for some c in (a,b) .

If f: RrarrR and g:RrarrR are two given functions, then prove that 2min.{f(x)-g(x),0}=f(x)-g(x)-|g(x)-f(x)|

If the functions f(x) and g(x) are continuous on [a,b] and differentiable on (a,b) then in the interval (a,b) the equation |{:(f'(x),f(a)),(g'(x),g(a)):}|=(1)/(a-b)=|{:(f(a),f(b)),(g(a),g(b)):}|

Suppose f(x) and g(x) are two continuous functions defined for 0<=x<=1 .Given, f(x)=int_0^1 e^(x+1) .f(t) dt and g(x)=int_0^1 e^(x+1) *g(t) dt+x The value of f( 1) equals

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  2. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  3. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  4. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  5. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  6. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  7. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  8. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  9. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  10. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  11. Evaluate int(o)^(2pi)[sin x]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  12. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  13. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  14. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  15. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  16. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  17. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  18. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  19. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  20. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |