Home
Class 12
MATHS
The value of int(0)^(1)(tan^(-1)((x)/(x+...

The value of `int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx` is

A

`1//4`

B

`1//2`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^1 \frac{\tan^{-1}\left(\frac{x}{x+1}\right)}{\tan^{-1}\left(\frac{1 + 2x - 2x^2}{2}\right)} \, dx, \] we can utilize the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] In this case, \( a = 1 \). Therefore, we can express \( I \) as: \[ I = \int_0^1 \frac{\tan^{-1}\left(\frac{1-x}{(1-x)+1}\right)}{\tan^{-1}\left(\frac{1 + 2(1-x) - 2(1-x)^2}{2}\right)} \, dx. \] Now, simplifying the expressions: 1. The first term becomes: \[ \tan^{-1}\left(\frac{1-x}{2-x}\right). \] 2. The second term simplifies as follows: \[ 1 + 2(1-x) - 2(1-x)^2 = 1 + 2 - 2x - 2(1 - 2x + x^2) = 1 + 2 - 2x - 2 + 4x - 2x^2 = 2x - 2x^2 + 1. \] Dividing by 2 gives: \[ \tan^{-1}\left(\frac{2x - 2x^2 + 1}{2}\right). \] Thus, we can rewrite \( I \) as: \[ I = \int_0^1 \frac{\tan^{-1}\left(\frac{1-x}{2-x}\right)}{\tan^{-1}\left(\frac{1 + 2x - 2x^2}{2}\right)} \, dx. \] Next, we add the two expressions for \( I \): \[ 2I = \int_0^1 \left( \frac{\tan^{-1}\left(\frac{x}{x+1}\right) + \tan^{-1}\left(\frac{1-x}{2-x}\right)}{\tan^{-1}\left(\frac{1 + 2x - 2x^2}{2}\right)} \right) \, dx. \] Using the identity for the sum of arctangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right), \] we can simplify the numerator: \[ \tan^{-1}\left(\frac{x}{x+1}\right) + \tan^{-1}\left(\frac{1-x}{2-x}\right) = \tan^{-1}\left(\frac{\frac{x}{x+1} + \frac{1-x}{2-x}}{1 - \frac{x}{x+1} \cdot \frac{1-x}{2-x}}\right). \] After simplification, we find that: \[ 2I = \int_0^1 1 \, dx = 1. \] Thus, we have: \[ I = \frac{1}{2}. \] ### Final Answer: \[ I = \frac{1}{2}. \]

To solve the integral \[ I = \int_0^1 \frac{\tan^{-1}\left(\frac{x}{x+1}\right)}{\tan^{-1}\left(\frac{1 + 2x - 2x^2}{2}\right)} \, dx, \] we can utilize the property of definite integrals that states: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

Evaluate int_0^1(tan^(-1)x)/(1+x^2)dx

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

The value of inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx

The value of inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  2. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  3. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  4. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  5. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  6. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  7. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  8. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  9. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  10. Evaluate int(o)^(2pi)[sin x]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  11. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  12. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  13. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  14. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  15. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  16. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  17. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  18. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  19. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  20. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |