Home
Class 12
MATHS
int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^...

`int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))`dx is equal to `e+1` (b) `1-e` `e-1` (d) none of these

A

`e+1`

B

`2e`

C

`e-1`

D

`e-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{|\sin x|} \cos x}{1 + e^{\tan x}} \, dx, \] we will use properties of definite integrals and some substitutions. ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \(a = -\frac{\pi}{2}\) and \(b = \frac{\pi}{2}\). Thus, we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{|\sin(-x)|} \cos(-x)}{1 + e^{\tan(-x)}} \, dx. \] ### Step 2: Simplify the expressions Using the properties of sine and cosine, we have: - \(\sin(-x) = -\sin x\) so \(|\sin(-x)| = |\sin x|\), - \(\cos(-x) = \cos x\), - \(\tan(-x) = -\tan x\). Thus, we can rewrite the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{|\sin x|} \cos x}{1 + e^{-\tan x}} \, dx. \] ### Step 3: Combine the two forms of the integral Now we have two expressions for \(I\): 1. \(I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{|\sin x|} \cos x}{1 + e^{\tan x}} \, dx\) 2. \(I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{|\sin x|} \cos x}{1 + e^{-\tan x}} \, dx\) Adding these two equations gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{e^{|\sin x|} \cos x}{1 + e^{\tan x}} + \frac{e^{|\sin x|} \cos x}{1 + e^{-\tan x}} \right) dx. \] ### Step 4: Simplify the combined expression The combined expression simplifies to: \[ \frac{e^{|\sin x|} \cos x \left(1 + e^{-\tan x} + 1 + e^{\tan x}\right)}{(1 + e^{\tan x})(1 + e^{-\tan x})}. \] This simplifies further to: \[ \frac{e^{|\sin x|} \cos x (2 + e^{\tan x} + e^{-\tan x})}{(1 + e^{\tan x})(1 + e^{-\tan x})}. \] ### Step 5: Evaluate the integral Using the property of symmetry, we can evaluate the integral from \(0\) to \(\frac{\pi}{2}\): \[ I = 2 \int_{0}^{\frac{\pi}{2}} \frac{e^{|\sin x|} \cos x}{1 + e^{\tan x}} \, dx. \] Now, we can substitute \(t = \sin x\), which gives \(dt = \cos x \, dx\). The limits change from \(0\) to \(1\): \[ I = 2 \int_{0}^{1} e^{t} \, dt. \] ### Step 6: Compute the integral Integrating \(e^{t}\) gives: \[ \int e^{t} \, dt = e^{t} + C. \] Thus, evaluating from \(0\) to \(1\): \[ I = 2 \left[ e^{t} \right]_{0}^{1} = 2 \left( e - 1 \right). \] ### Final Answer Thus, we have: \[ I = e - 1. \] ### Conclusion The value of the integral is: \[ \boxed{e - 1}. \]

To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{|\sin x|} \cos x}{1 + e^{\tan x}} \, dx, \] we will use properties of definite integrals and some substitutions. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int_(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

The value of int_(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx is equal to

I=int_(0)^(2pi)(1)/(1+e^(sinx))dx is equal to

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

Evaluate: int_(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

Evaluate : int_(-pi/2)^(pi/2)(cosx)/(1+e^x)dx

Evaluate int_(pi/3)^(pi/2) e^x((1+sinx)/(1+cosx))dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  2. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  3. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  4. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  5. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  6. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  7. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  8. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  9. Evaluate int(o)^(2pi)[sin x]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  10. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  11. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  12. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  13. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  14. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  15. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  16. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  17. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  18. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  19. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  20. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |