Home
Class 12
MATHS
Let T >0 be a fixed real number. Suppose...

Let `T >0` be a fixed real number. Suppose `f` is continuous function such that for all `x in R ,f(x+T)=f(x)dot` If `I=int_0^Tf(x)dx ,` then the value of `int_3^(3+3T)f(2x)dx` is `3/2I` (b) `2I` (c) `3I` (d) `6I`

A

`3/2I`

B

`2I`

C

`3I`

D

`6I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_3^{3+3T} f(2x) \, dx \) given that \( f(x+T) = f(x) \) for all \( x \in \mathbb{R} \) and that \( I = \int_0^T f(x) \, dx \). ### Step-by-Step Solution: 1. **Change of Variables**: Let \( u = 2x \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{du}{2} \] Now we need to change the limits of integration. When \( x = 3 \), \( u = 2 \cdot 3 = 6 \). When \( x = 3 + 3T \), \( u = 2(3 + 3T) = 6 + 6T \). Therefore, the integral becomes: \[ \int_3^{3+3T} f(2x) \, dx = \int_6^{6+6T} f(u) \cdot \frac{du}{2} = \frac{1}{2} \int_6^{6+6T} f(u) \, du \] 2. **Using the Periodicity of \( f \)**: Since \( f \) is periodic with period \( T \), we can express the integral \( \int_6^{6+6T} f(u) \, du \) using the property of periodic functions: \[ \int_a^{a+nT} f(x) \, dx = n \int_0^T f(x) \, dx \] Here, \( a = 6 \) and \( n = 6 \) (since \( 6 + 6T - 6 = 6T \)). Thus: \[ \int_6^{6+6T} f(u) \, du = 6 \int_0^T f(x) \, dx = 6I \] 3. **Putting it All Together**: Now substituting back into our integral: \[ \int_3^{3+3T} f(2x) \, dx = \frac{1}{2} \cdot 6I = 3I \] Thus, the value of \( \int_3^{3+3T} f(2x) \, dx \) is \( 3I \). ### Final Answer: The correct option is (c) \( 3I \). ---

To solve the problem, we need to evaluate the integral \( \int_3^{3+3T} f(2x) \, dx \) given that \( f(x+T) = f(x) \) for all \( x \in \mathbb{R} \) and that \( I = \int_0^T f(x) \, dx \). ### Step-by-Step Solution: 1. **Change of Variables**: Let \( u = 2x \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{du}{2} ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let T >0 be a fixed real number. Suppose f is continuous function such that for all x in R ,f(x+T)=f(x)dot If I=int_0^Tf(x)dx , then the value of int_3^(3+3T)f(2x)dx is (a) 3/2I (b) 2I (c) 3I (d) 6I

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)) AA x in R . If int_0^1 f(x)dx=1, then find the value of int_1^2f(x)dx .

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=int_0^x tf(t)dt+2, then

If f is continuous on [0,1] such that f(x)+f(x+1/2)=1 and int_0^1f(x)dx=k , then value of 2k is 0 (2) 1 (3) 2 (4) 3

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |

  2. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  3. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  4. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  5. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  6. Evaluate int(o)^(2pi)[sin x]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  7. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  8. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  9. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  10. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  11. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  12. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  13. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  14. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  15. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  16. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  17. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  18. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  19. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  20. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |