Home
Class 12
MATHS
int1^4(x-0. 4)dx equals (where {x }is a ...

`int_1^4(x-0. 4)dx equals (where {x }is a fractional part of (x)` (a) 13 (b) 6.3 (c) 1.5 (d) 7.5

A

`13`

B

`6.3`

C

`1.5`

D

`7.5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_1^4 (x - 0.4) \, dx \) where \( x \) is the fractional part of \( x \), we will follow these steps: ### Step 1: Change of Variable Let \( t = x - 0.4 \). Then, the differential \( dx = dt \). ### Step 2: Change the Limits of Integration When \( x = 1 \): \[ t = 1 - 0.4 = 0.6 \] When \( x = 4 \): \[ t = 4 - 0.4 = 3.6 \] Thus, the integral becomes: \[ \int_{0.6}^{3.6} t \, dt \] ### Step 3: Break the Integral into Intervals Next, we need to consider the fractional part of \( t \). The fractional part function \( \{t\} \) can be expressed piecewise over the intervals: - From \( 0.6 \) to \( 1 \): \( \{t\} = t \) - From \( 1 \) to \( 2 \): \( \{t\} = t - 1 \) - From \( 2 \) to \( 3 \): \( \{t\} = t - 2 \) - From \( 3 \) to \( 3.6 \): \( \{t\} = t - 3 \) Thus, we can break the integral into four parts: \[ \int_{0.6}^{1} t \, dt + \int_{1}^{2} (t - 1) \, dt + \int_{2}^{3} (t - 2) \, dt + \int_{3}^{3.6} (t - 3) \, dt \] ### Step 4: Evaluate Each Integral 1. **First Integral**: \[ \int_{0.6}^{1} t \, dt = \left[ \frac{t^2}{2} \right]_{0.6}^{1} = \frac{1^2}{2} - \frac{0.6^2}{2} = \frac{1}{2} - \frac{0.36}{2} = \frac{1}{2} - 0.18 = 0.32 \] 2. **Second Integral**: \[ \int_{1}^{2} (t - 1) \, dt = \left[ \frac{(t-1)^2}{2} \right]_{1}^{2} = \left[ \frac{(2-1)^2}{2} \right] = \frac{1^2}{2} = \frac{1}{2} = 0.5 \] 3. **Third Integral**: \[ \int_{2}^{3} (t - 2) \, dt = \left[ \frac{(t-2)^2}{2} \right]_{2}^{3} = \left[ \frac{(3-2)^2}{2} \right] = \frac{1^2}{2} = \frac{1}{2} = 0.5 \] 4. **Fourth Integral**: \[ \int_{3}^{3.6} (t - 3) \, dt = \left[ \frac{(t-3)^2}{2} \right]_{3}^{3.6} = \left[ \frac{(3.6-3)^2}{2} \right] = \frac{0.6^2}{2} = \frac{0.36}{2} = 0.18 \] ### Step 5: Sum the Results Now, we add all the results from the integrals: \[ 0.32 + 0.5 + 0.5 + 0.18 = 1.5 \] ### Final Answer Thus, the value of the integral \( \int_1^4 (x - 0.4) \, dx \) is: \[ \boxed{1.5} \]

To solve the integral \( \int_1^4 (x - 0.4) \, dx \) where \( x \) is the fractional part of \( x \), we will follow these steps: ### Step 1: Change of Variable Let \( t = x - 0.4 \). Then, the differential \( dx = dt \). ### Step 2: Change the Limits of Integration When \( x = 1 \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^9{sqrt(x)}dx , where {x} denotes the fractional part of x , is 5 (b) 6 (c) 4 (d) 3

int_(0)^(4) {sqrt(x)} is equal to, where {x} denotes the fraction part of x.

The value of int_(0)^(4) {x} dx (where , {.} denotes fractional part of x) is equal to

int1/(x^4+5x^2+1)dx

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

int_a^4{x}^([x])dx is equal to (where [.] and {.} represent greatest integer function and fractional part function respectively. (13)/(12) (b) 1/(12) (c) 5/(12) (d) (17)/(12)

int_0^2 x^3[1+cos((pix)/2)]dx , where [x] denotes the integral part of x , is equal to (A) 1/2 (B) 1/4 (C) 0 (D) none of these

int(1)/(x^(2)+4x+13)dx is equal to

Write the following decimals as fractions. Reduce the fractions to lowest form.(a) 0.6 (b) 2.5 (c) 1.0 (d) 3.8 (e) 13.7 (f) 21.2 (g) 6.4

The value of int_(0)^(1)({2x}-1)({3x}-1)dx , (where {} denotes fractional part opf x) is equal to :

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. [ The value of int(-pi)^( pi)sum(r=0)^(999)cos rx(1+sum(r=1)^(999)sin ...

    Text Solution

    |

  2. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  3. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  4. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  5. Evaluate int(o)^(2pi)[sin x]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  6. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  7. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  8. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  9. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  10. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  11. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  12. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  13. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  14. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  15. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  16. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  17. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  18. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  19. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  20. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |