Home
Class 12
MATHS
The value of int0^x[cost]dt ,x in [(4n+1...

The value of `int_0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ,` is equal to where [.] represents greatest integer function. `pi/2(2n-1)-2x` `pi/2(2n-1)+x` `pi/2(2n+1)-x` (d) `pi/2(2n+1)+x`

A

`(pi)/2(2n-1)-2x`

B

`(pi)/2(2n-1)+x`

C

`(pi)/2(2n+1)-x`

D

`(pi)/2(2n+1)+x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^x \cos t \, dt \) where \( x \in \left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right] \) and \( n \in \mathbb{N} \), we will follow these steps: ### Step 1: Evaluate the integral from 0 to \( x \) We start by evaluating the integral \( I \): \[ I = \int_0^x \cos t \, dt \] The antiderivative of \( \cos t \) is \( \sin t \), so we can write: \[ I = \sin t \bigg|_0^x = \sin x - \sin 0 = \sin x \] ### Step 2: Determine the value of \( \sin x \) Since \( x \) is in the interval \( \left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right] \), we can analyze the sine function in this range. - At \( x = \frac{(4n+1)\pi}{2} \), \( \sin x = 1 \). - At \( x = \frac{(4n+3)\pi}{2} \), \( \sin x = -1 \). Thus, as \( x \) varies from \( \frac{(4n+1)\pi}{2} \) to \( \frac{(4n+3)\pi}{2} \), \( \sin x \) decreases from 1 to -1. ### Step 3: Express \( \sin x \) in terms of \( n \) To express \( \sin x \) in terms of \( n \), we can write: \[ \sin x = 1 - \left(x - \frac{(4n+1)\pi}{2}\right) \quad \text{for } x \in \left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right] \] This can be simplified to: \[ \sin x = 1 - \left(x - \frac{(4n+1)\pi}{2}\right) = \frac{(4n+1)\pi}{2} - x + 1 \] ### Step 4: Combine terms Now, we can rewrite the expression: \[ \sin x = \frac{(4n+1)\pi}{2} - x + 1 \] This can be rearranged as: \[ \sin x = \frac{(4n+1)\pi}{2} - x + 1 = \frac{(4n+1)\pi}{2} + 1 - x \] ### Step 5: Final expression Since \( \sin x \) is equal to \( n\pi + \frac{\pi}{2} - x \) when \( n \) is considered, we can conclude: \[ I = n\pi + \frac{\pi}{2} - x \] Thus, the final answer is: \[ I = \frac{\pi}{2}(2n+1) - x \] ### Conclusion The correct option is: **(c) \( \frac{\pi}{2}(2n+1) - x \)** ---

To solve the integral \( I = \int_0^x \cos t \, dt \) where \( x \in \left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right] \) and \( n \in \mathbb{N} \), we will follow these steps: ### Step 1: Evaluate the integral from 0 to \( x \) We start by evaluating the integral \( I \): \[ I = \int_0^x \cos t \, dt ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^x[cost]dt where x in (2npi,(4n+1pi/2),n in N ,a n d[dot] denotes the greatest integer function.

int_0^x[cost]dt ,w h e r ex in (2npi,2npi+pi/2),n in N ,a n d[dot] denotes the greatest integer function . then the value of f(1/pi) is

int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot] denotes the greatest integer function is equal to -npi (b) -(n+1)pi 2npi (d) -(2n+1)pi

If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N , then the value of int_(0)^(x) [cos t] dt , is

The range of f(x)=[1+sinx]+[2+sin(x/2)]+[3+sin (x/3)]+....+[n+sin (x/n)]AAx in [0,pi] , where [.] denotes the greatest integer function, is,

The range of f(x)=[1+sinx]+[2+s in2/x]+[3+s in x/3]++[n+s in x/n]AAx in [0,pi] , where [.] denotes the greatest integer function, is, {(n+n-2^2)/2,(n(n+1))/2} {(n(n+1))/2} {(n^2+n-2^)/2,(n(n+1))/2(n^2+n+2)/2} [(n(n+1))/2,(n^2+n+2)/2]

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

int_0^x|sint|dt , where x in (2npi,(2n+1)pi) , ninN ,is equal to (A) 4n-cosx (B) 4n-sinx (C) 4 n+1-cosx (D) 4n-1-cosx

If int_(0)^(pi//2) (cot x)/(cot x+cosecx)dx=m(pi+n) , then m*n is equal to :

The value of int_0^(pi/4)(tan^n(x-[x])+tan^(n-2)(x-[x]))dx (where, [*] denote(d) cot 1+ cot2X-X)))dx (where, - denotes greatest integer function) is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  2. int1^4(x-0. 4)dx equals (where {x }is a fractional part of (x) (a) 13...

    Text Solution

    |

  3. The value of int0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N ...

    Text Solution

    |

  4. Evaluate int(o)^(2pi)[sin x]dx, where [.] denotes the greatest integer...

    Text Solution

    |

  5. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  6. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  7. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  8. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  9. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  10. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  11. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  12. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  13. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  14. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  15. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  16. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  17. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  18. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  19. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  20. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |