Home
Class 12
MATHS
If g(x)=int0^x(|sint|+|cost|)dt ,t h e n...

`If g(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2)` is equal to, where `n in N ,`
a)`g(x)+g(pi)`
(b) `g(x)+ng((pi)/(n2))`
c)`g(x)+g(pi/2)`
(d) none of these

A

`g(x)+g(pi)`

B

`g(x)+ng((pi)/2)`

C

`g(x)+g((pi)/2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( g(x + n\frac{\pi}{2}) \) where \( g(x) = \int_0^x (|\sin t| + |\cos t|) dt \). ### Step 1: Write the expression for \( g(x + n\frac{\pi}{2}) \) We start by substituting \( x + n\frac{\pi}{2} \) into the function \( g \): \[ g\left(x + n\frac{\pi}{2}\right) = \int_0^{x + n\frac{\pi}{2}} (|\sin t| + |\cos t|) dt \] ### Step 2: Split the integral We can split the integral into two parts: \[ g\left(x + n\frac{\pi}{2}\right) = \int_0^x (|\sin t| + |\cos t|) dt + \int_x^{x + n\frac{\pi}{2}} (|\sin t| + |\cos t|) dt \] The first part is simply \( g(x) \): \[ g\left(x + n\frac{\pi}{2}\right) = g(x) + \int_x^{x + n\frac{\pi}{2}} (|\sin t| + |\cos t|) dt \] ### Step 3: Evaluate the second integral Now we need to evaluate the second integral \( \int_x^{x + n\frac{\pi}{2}} (|\sin t| + |\cos t|) dt \). The function \( |\sin t| + |\cos t| \) is periodic with a period of \( \pi \). ### Step 4: Determine the periodicity Since \( |\sin t| + |\cos t| \) has a period of \( \pi \), we can express the integral over \( n\frac{\pi}{2} \) in terms of its periodic behavior. For \( n \) even, \( n\frac{\pi}{2} \) covers \( n/2 \) full periods of \( \pi \). For \( n \) odd, it covers \( (n-1)/2 \) full periods and an additional \( \frac{\pi}{2} \). ### Step 5: Calculate the integral The integral over one full period \( [0, \pi] \) can be computed as follows: \[ \int_0^{\pi} (|\sin t| + |\cos t|) dt = \int_0^{\pi} |\sin t| dt + \int_0^{\pi} |\cos t| dt \] Calculating these integrals gives: \[ \int_0^{\pi} |\sin t| dt = 2 \quad \text{and} \quad \int_0^{\pi} |\cos t| dt = 2 \] Thus, \[ \int_0^{\pi} (|\sin t| + |\cos t|) dt = 2 + 2 = 4 \] ### Step 6: Use the periodicity Using the periodicity, we can write: \[ \int_x^{x + n\frac{\pi}{2}} (|\sin t| + |\cos t|) dt = n \cdot \int_0^{\pi} (|\sin t| + |\cos t|) dt = n \cdot 4 = 4n \] ### Step 7: Combine the results Now, we can combine the results: \[ g\left(x + n\frac{\pi}{2}\right) = g(x) + 4n \] ### Step 8: Identify the correct option We need to express \( g\left(x + n\frac{\pi}{2}\right) \) in terms of the given options. The closest match is: \[ g(x) + n g\left(\frac{\pi}{2}\right) \] Since \( g\left(\frac{\pi}{2}\right) = 4 \), we have: \[ g\left(x + n\frac{\pi}{2}\right) = g(x) + 4n = g(x) + n g\left(\frac{\pi}{2}\right) \] Thus, the correct answer is: **(b) \( g(x) + n g\left(\frac{\pi}{2}\right) \)**

To solve the problem, we need to evaluate \( g(x + n\frac{\pi}{2}) \) where \( g(x) = \int_0^x (|\sin t| + |\cos t|) dt \). ### Step 1: Write the expression for \( g(x + n\frac{\pi}{2}) \) We start by substituting \( x + n\frac{\pi}{2} \) into the function \( g \): \[ g\left(x + n\frac{\pi}{2}\right) = \int_0^{x + n\frac{\pi}{2}} (|\sin t| + |\cos t|) dt ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If g(x)=int_0^x(|sint|+|cost|)dt ,then g(x+(pin)/2) is equal to, where n in N , (a) g(x)+g(pi) (b) g(x)+g((npi)/(2)) (c) g(x)+g(pi/2) (d) none of these

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a) g(x)+g(pi) (b) g(x)-g(pi) (c) g(x)g(pi) (d) (g(x))/(g(pi))

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If g(x)""=int0xcos4t"dt" , then g(x""+pi) equals: (1) g(x)/(g(pi) (2) g(x)+g(pi) (3) g(x)-g(pi) (4) g(x)dotg(pi)

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt , then f(x+pi) is (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

f(x)=int_0^x(e^t-1)(t-1)(sint-cost)sin t dt ,AAx in (-pi/2, 2pi), then f(x) is decreasing in :

If f(x)=x+tanx and g(x) is the inverse of f(x) , then differentiation of g(x) is (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)+x]^2) (c)1/(2+[g(x)-x]^2) (d) none of these

If g is the inverse function of fa n df^(prime)(x)=sinx ,t h e ng^(prime)(x) is (a) cos e c{g(x)} (b) "sin"{g(x)} (c) -1/("sin"{g(x)}) (d) none of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. int0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer f...

    Text Solution

    |

  2. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  3. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  4. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  5. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  6. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  7. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  8. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  9. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  10. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  11. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  12. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  13. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  14. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  15. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  16. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  17. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  18. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  19. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  20. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |