Home
Class 12
MATHS
If x=intc^(sint)sin^(-1)z dz ,y =intk^(s...

If `x=int_c^(sint)sin^(-1)z dz ,y =int_k^(sqrt(t))(sinz^2)/zdz,` then `(dy)/(dx)` is equal to (a) `(tant)/(2t)` (b) `(tant)/(t^2)` (c) `t/(2t^2)` (d) `(tan t)/(2t^2)`

A

`(tant)/(2t)`

B

`(tant)/(t^(2))`

C

`(tan t)/(2t^(2))`

D

`(tan t^(2))/(2t^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the definitions of \(x\) and \(y\) in terms of integrals. Let's break down the solution step by step. ### Step 1: Define the integrals We have: \[ x = \int_c^{\sin t} \sin^{-1}(z) \, dz \] \[ y = \int_k^{\sqrt{t}} \frac{\sin(z^2)}{z} \, dz \] ### Step 2: Differentiate \(x\) with respect to \(t\) Using the Leibniz rule for differentiation under the integral sign, we differentiate \(x\): \[ \frac{dx}{dt} = \sin^{-1}(\sin t) \cdot \frac{d}{dt}(\sin t) - \sin^{-1}(c) \cdot 0 \] Since \(\frac{d}{dt}(\sin t) = \cos t\), we have: \[ \frac{dx}{dt} = \sin^{-1}(\sin t) \cdot \cos t = t \cdot \cos t \] ### Step 3: Differentiate \(y\) with respect to \(t\) Again, applying the Leibniz rule for \(y\): \[ \frac{dy}{dt} = \frac{\sin((\sqrt{t})^2)}{\sqrt{t}} \cdot \frac{d}{dt}(\sqrt{t}) - \frac{\sin(k^2)}{k} \cdot 0 \] Since \(\frac{d}{dt}(\sqrt{t}) = \frac{1}{2\sqrt{t}}\), we have: \[ \frac{dy}{dt} = \frac{\sin(t)}{\sqrt{t}} \cdot \frac{1}{2\sqrt{t}} = \frac{\sin(t)}{2t} \] ### Step 4: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} \] We already have \(\frac{dy}{dt} = \frac{\sin(t)}{2t}\) and we need \(\frac{dt}{dx}\): \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{t \cos t} \] Thus, \[ \frac{dy}{dx} = \frac{\sin(t)}{2t} \cdot \frac{1}{t \cos t} = \frac{\sin(t)}{2t^2 \cos t} \] ### Step 5: Simplify \(\frac{dy}{dx}\) Using the identity \(\tan(t) = \frac{\sin(t)}{\cos(t)}\), we can rewrite: \[ \frac{dy}{dx} = \frac{\tan(t)}{2t^2} \] ### Conclusion Thus, the final result is: \[ \frac{dy}{dx} = \frac{\tan(t)}{2t^2} \] ### Final Answer The correct option is (d) \(\frac{\tan t}{2t^2}\).

To solve the problem, we need to find \(\frac{dy}{dx}\) given the definitions of \(x\) and \(y\) in terms of integrals. Let's break down the solution step by step. ### Step 1: Define the integrals We have: \[ x = \int_c^{\sin t} \sin^{-1}(z) \, dz \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Ifx=int_c^(sint)sin^(-1)z dz ,y=int_k^(sqrt(t))(sinz^2)/zdz ,t h e n(dy)/(dx) is \ equals

If x=int_(c^(2))^(tan t)tan^(-1)z dz, y= int_(n)^(sqrt(t))(cos(z^(2)))/(z)dx then (dy)/(dx) is equal to : (where c and n are constants) :

If x=a t^2,y=2a t , then (d^2y)/(dx^2) is equal to (a) -1/(t^2) (b) 1/(2a t^2) (c) -1/(t^3) (d) 1/(2a t^3)

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

If y=a(1+cost)andx=a(t-sint) , then (dy)/(dx) is equal to: a) "tan"(t)/(2) b) -"tan"(t)/(2) c) -"cot"(t)/(2) d) none of these

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If int_0^y cos t^2\ dt = int_0^(x^2)\ sint/t \ dt , then dy/dx is equal to

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

Find (dy)/(dx) , if x=a t^2, y=2a t .

If tantheta= t, then tan2theta+sec2theta is equal to (a) (1+t)/(1-t) (b) (1-t)/(1+t) (c) (2t)/(1-t) (d) (2t)/(1+t)

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. f is an odd function, It is also known that f(x) is continuous for all...

    Text Solution

    |

  2. If g(x)=int0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, whe...

    Text Solution

    |

  3. If x=intc^(sint)sin^(-1)z dz ,y =intk^(sqrt(t))(sinz^2)/zdz, then (dy)...

    Text Solution

    |

  4. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  5. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  6. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  7. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  8. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  9. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  10. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  11. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  12. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  13. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  14. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  15. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  16. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  17. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  18. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  19. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  20. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |