Home
Class 12
MATHS
If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf...

If `f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x)` is equal to
a) `-cosx`
(b) `-sinx`
c)`int_0^x(x-t)f(t)dt`
(d) 0

A

`-cosx`

B

`-sinx`

C

`int_(0)^(x)(x-t)f(t)dt`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f''(x) + f(x) \) given the function: \[ f(x) = \cos x - \int_0^x (x - t) f(t) dt \] ### Step 1: Differentiate \( f(x) \) We start by differentiating \( f(x) \) with respect to \( x \): \[ f'(x) = \frac{d}{dx} \left( \cos x - \int_0^x (x - t) f(t) dt \right) \] Using the Leibniz rule for differentiation under the integral sign, we have: \[ f'(x) = -\sin x - \left[ (x - t) f(t) \bigg|_{t=0}^{t=x} + \int_0^x \frac{\partial}{\partial x}((x - t) f(t)) dt \right] \] Evaluating the boundary term: \[ = -\sin x - \left[ (x - x)f(x) - (x - 0)f(0) \right] + \int_0^x f(t) dt \] This simplifies to: \[ f'(x) = -\sin x + \int_0^x f(t) dt \] ### Step 2: Differentiate \( f'(x) \) Next, we differentiate \( f'(x) \) to find \( f''(x) \): \[ f''(x) = \frac{d}{dx} \left( -\sin x + \int_0^x f(t) dt \right) \] Again applying the Leibniz rule: \[ f''(x) = -\cos x + f(x) \] ### Step 3: Combine \( f''(x) \) and \( f(x) \) Now we combine \( f''(x) \) and \( f(x) \): \[ f''(x) + f(x) = (-\cos x + f(x)) + f(x) = -\cos x + 2f(x) \] However, we need to simplify this further. Since we have \( f(x) = \cos x - \int_0^x (x - t) f(t) dt \), we can substitute \( f(x) \) back into the equation. ### Step 4: Final Result From our previous calculations, we have: \[ f''(x) + f(x) = -\cos x \] Thus, the final answer is: \[ f''(x) + f(x) = -\cos x \] ### Conclusion The correct option is: **(a) \(-\cos x\)**

To solve the problem, we need to find the value of \( f''(x) + f(x) \) given the function: \[ f(x) = \cos x - \int_0^x (x - t) f(t) dt \] ### Step 1: Differentiate \( f(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(primeprime)(x)+f(x) is equal to (a) -cosx (b) -sinx (c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=int_0^x tf(t)dt+2, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Let f(x)=int2^x (dt)/sqrt(1+t^4) and g be the inverse of f. Then, the...

    Text Solution

    |

  2. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  3. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  4. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  5. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  6. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  7. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  8. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  9. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  10. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  11. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  12. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  13. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  14. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  15. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  16. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  17. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  18. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  19. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  20. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |