Home
Class 12
MATHS
A function f is continuous for all x (an...

A function `f` is continuous for all `x` (and not everywhere zero) such that `f^(2)(x)=int_(0)^(x)f(t)(cost)/(2+sint)dt`. Then `f(x)` is

A

`1/2 In((x+cosx)/2)`

B

`1/2 In(3/(2+cosx))`

C

`1/2In((2+sinx)/2)`

D

`(cosx+sinx)/(2+sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given that: \[ f^2(x) = \int_0^x \frac{f(t) \cos t}{2 + \sin t} dt \] ### Step 1: Differentiate both sides We will differentiate both sides of the equation with respect to \( x \). Using the Leibniz rule for differentiation under the integral sign, we have: \[ \frac{d}{dx}[f^2(x)] = 2f(x)f'(x) \] For the right-hand side, applying Leibniz's rule gives: \[ \frac{d}{dx} \left( \int_0^x \frac{f(t) \cos t}{2 + \sin t} dt \right) = \frac{f(x) \cos x}{2 + \sin x} \] So we equate both sides: \[ 2f(x)f'(x) = \frac{f(x) \cos x}{2 + \sin x} \] ### Step 2: Simplify the equation Assuming \( f(x) \neq 0 \) (since \( f \) is not everywhere zero), we can divide both sides by \( f(x) \): \[ 2f'(x) = \frac{\cos x}{2 + \sin x} \] ### Step 3: Solve for \( f'(x) \) Now we can express \( f'(x) \): \[ f'(x) = \frac{\cos x}{2(2 + \sin x)} \] ### Step 4: Integrate to find \( f(x) \) Next, we integrate \( f'(x) \): \[ f(x) = \int \frac{\cos x}{2(2 + \sin x)} dx \] To solve this integral, we can use substitution. Let \( u = 2 + \sin x \), then \( du = \cos x \, dx \). Thus, the integral becomes: \[ f(x) = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |2 + \sin x| + C \] ### Step 5: Determine the constant of integration To find the constant \( C \), we can evaluate \( f(0) \). From the original equation, substituting \( x = 0 \): \[ f^2(0) = \int_0^0 \frac{f(t) \cos t}{2 + \sin t} dt = 0 \] Thus, \( f(0) = 0 \). Substituting \( x = 0 \) into our expression for \( f(x) \): \[ f(0) = \frac{1}{2} \ln(2 + \sin(0)) + C = \frac{1}{2} \ln(2) + C = 0 \] This gives: \[ C = -\frac{1}{2} \ln(2) \] ### Step 6: Final expression for \( f(x) \) Substituting \( C \) back into our expression for \( f(x) \): \[ f(x) = \frac{1}{2} \ln(2 + \sin x) - \frac{1}{2} \ln(2) = \frac{1}{2} \ln\left(\frac{2 + \sin x}{2}\right) \] ### Conclusion Thus, the function \( f(x) \) is: \[ f(x) = \frac{1}{2} \ln\left(\frac{2 + \sin x}{2}\right) \]

To solve the problem, we need to find the function \( f(x) \) given that: \[ f^2(x) = \int_0^x \frac{f(t) \cos t}{2 + \sin t} dt \] ### Step 1: Differentiate both sides We will differentiate both sides of the equation with respect to \( x \). Using the Leibniz rule for differentiation under the integral sign, we have: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

A function f is continuous for all x (and not everywhere zero) such that f^2(x)=int_0^xf(t)(cost)/(2+sint)dtdot Then f(x) is (a) 1/2 1n((x+cosx)/2); x!=0 (b) 1/2 1n(3/(x+cosx)); x!=0 (c) 1/2 1n((2+sinx)/2); x!=npi,n in I (d) (cosx+sinx)/(2+sinx); x!=npi+(3pi)/4,n in I

Find a function f, continous for all x(and not zero everywhere) such that f^(2)(x)=int_(0)^(x)(f(t) sin t)/(2+ cost)dt

If f(x) = int_(0)^(x^(2)) sqrt(cost)dt , find f'(x)

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

Let f(x) be a continuous function for all x , which is not identically zero such that {f(x)}^2=int_0^x\ f(t)\ (2sec^2t)/(4+tant)\ dt and f(0)=ln4, then

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

If {F(x)}^(101)=int_0^x(F(t))^(100)(dt)/(1+sint), then find F(x)

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  2. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  3. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  4. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  5. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  6. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  7. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  8. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  9. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  10. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  11. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  12. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  13. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  14. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  15. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  16. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  17. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  18. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  19. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  20. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |