Home
Class 12
MATHS
lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int...

`lim_(x->0) 1/x [int_y ^a)e^(sin^2t) dt-int_(x+y) ^a)e^(sin^2t)dt]` is equal to (a) `e^(sin^(2)y)` (b) `sin2ye^(sin^(2)y` (c) `0` (d) none of these

A

a. `e^(sin^(2)y)`

B

`sin2ye^(sin^(2)y`

C

`0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{x \to 0} \frac{1}{x} \left( \int_y^a e^{\sin^2 t} \, dt - \int_{x+y}^a e^{\sin^2 t} \, dt \right) \] ### Step 2: Apply the Fundamental Theorem of Calculus Using the properties of definite integrals, we can rewrite the second integral: \[ \int_{x+y}^a e^{\sin^2 t} \, dt = \int_y^a e^{\sin^2 t} \, dt - \int_y^{x+y} e^{\sin^2 t} \, dt \] Thus, we can substitute this back into our limit: \[ \lim_{x \to 0} \frac{1}{x} \left( \int_y^a e^{\sin^2 t} \, dt - \left( \int_y^a e^{\sin^2 t} \, dt - \int_y^{x+y} e^{\sin^2 t} \, dt \right) \right) \] This simplifies to: \[ \lim_{x \to 0} \frac{1}{x} \left( \int_y^{x+y} e^{\sin^2 t} \, dt \right) \] ### Step 3: Apply L'Hôpital's Rule As \( x \to 0 \), both the numerator and denominator approach 0, allowing us to apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\int_y^{x+y} e^{\sin^2 t} \, dt}{x} \] Differentiating the numerator and denominator with respect to \( x \): - The derivative of the denominator \( x \) is \( 1 \). - For the numerator, we apply the Fundamental Theorem of Calculus: \[ \frac{d}{dx} \int_y^{x+y} e^{\sin^2 t} \, dt = e^{\sin^2(x+y)} \cdot \frac{d}{dx}(x+y) = e^{\sin^2(x+y)} \] ### Step 4: Substitute and Evaluate the Limit Now we have: \[ \lim_{x \to 0} e^{\sin^2(x+y)} \] As \( x \to 0 \), this approaches: \[ e^{\sin^2(y)} \] ### Final Answer Thus, the limit evaluates to: \[ e^{\sin^2 y} \] ### Conclusion The answer is \( e^{\sin^2 y} \), which corresponds to option (a). ---

To solve the limit problem given, we will follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{x \to 0} \frac{1}{x} \left( \int_y^a e^{\sin^2 t} \, dt - \int_{x+y}^a e^{\sin^2 t} \, dt \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

int_0^4((y^2-4y+5)sin(y-2)dy)/([2y^2-8y+11]) is equal to (a) 0 (b) 2 (c) -2 (d) none of these

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

If e^(sin x)-e^(-sin x)-4=0 , then x= (a) 0 (b) sin^(-1){(log)_e(2+sqrt(5))} (c) 1 (d) none of these

If y=sin(m\ sin^(-1)x) , then (1-x^2)y_2-x y_1 is equal to m^2y (b) m y (c) -m^2y (d) none of these

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If y=(sin^(-1)x)^2,\ then (1-x^2)y_2 is equal to x y_1+2 (b) x y_1-2 (c) x y_1+2 (d) none of these

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

If int_0^y cos t^2\ dt = int_0^(x^2)\ sint/t \ dt , then dy/dx is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If f(x)=cosx-int0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to ...

    Text Solution

    |

  2. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  3. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  4. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  5. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  6. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  7. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  8. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  9. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  10. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  11. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  12. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  13. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  14. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  15. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  16. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  17. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  18. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  19. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  20. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |