Home
Class 12
MATHS
Let f(x) =int1^x e^t/tdt,x in R^+ . The...

Let `f(x) =int_1^x e^t/tdt,x in R^+` . Then complete set of valuesof x for which `f(x) leq In` x is

A

`(0,1]`

B

`[1,oo)`

C

`(0,oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the complete set of values of \( x \) for which \( f(x) \leq \ln x \), where \( f(x) = \int_1^x \frac{e^t}{t} dt \). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function: \[ f(x) = \int_1^x \frac{e^t}{t} dt \] We need to analyze the inequality \( f(x) \leq \ln x \). 2. **Define a New Function**: Let's define a new function \( g(x) \): \[ g(x) = f(x) - \ln x \] We need to find the values of \( x \) such that \( g(x) \leq 0 \). 3. **Differentiate \( g(x) \)**: To analyze \( g(x) \), we differentiate it: \[ g'(x) = f'(x) - \frac{1}{x} \] By the Fundamental Theorem of Calculus, we have: \[ f'(x) = \frac{e^x}{x} \] Therefore, \[ g'(x) = \frac{e^x}{x} - \frac{1}{x} = \frac{e^x - 1}{x} \] 4. **Analyze \( g'(x) \)**: The sign of \( g'(x) \) depends on \( e^x - 1 \): - For \( x > 0 \), \( e^x > 1 \), hence \( g'(x) > 0 \). - This implies that \( g(x) \) is an increasing function for \( x > 0 \). 5. **Evaluate \( g(1) \)**: Now we evaluate \( g(1) \): \[ g(1) = f(1) - \ln 1 = \int_1^1 \frac{e^t}{t} dt - 0 = 0 - 0 = 0 \] 6. **Conclusion**: Since \( g(x) \) is increasing and \( g(1) = 0 \), it follows that: - For \( x < 1 \), \( g(x) < 0 \) (since \( g(x) \) is increasing). - For \( x = 1 \), \( g(x) = 0 \). - For \( x > 1 \), \( g(x) > 0 \). Therefore, the complete set of values of \( x \) for which \( f(x) \leq \ln x \) is: \[ x \in (0, 1] \] ### Final Answer: The complete set of values of \( x \) for which \( f(x) \leq \ln x \) is \( (0, 1] \).

To solve the problem, we need to find the complete set of values of \( x \) for which \( f(x) \leq \ln x \), where \( f(x) = \int_1^x \frac{e^t}{t} dt \). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function: \[ f(x) = \int_1^x \frac{e^t}{t} dt ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a^x-xlna , a>1. Then the complete set of real values of x for which f'(x)>0 is

Let f(x) be a function such that f '(x)= log _(1//3) (log _(3) (sin x+ a)). The complete set of values of 'a' for which f (x) is strictly decreasing for all real values of x is:

Let f(x) = 15 -|x-10|, x in R . Then, the set of all values of x, at which the function, g(x) = f(f(x)) is not differentiable, is

Let f (x) = 10 - |x-5| , x in R, then the set of all values of x at which f (f(x)) is not differentiable is

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

Let f(x)=int_0^x (cost)/tdt Then at x=(2n+1)pi/2 f(x) has

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

f(x)=int_1^x(tan^(-1)(t))/t dt \ AAx in R^+, then find the value of f(e^2)-f(1/(e^2))

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. A function f is continuous for all x (and not everywhere zero) such th...

    Text Solution

    |

  2. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  3. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  4. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  5. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  6. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  7. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  8. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  9. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  10. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  11. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  12. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  13. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  14. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  15. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  16. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  17. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  18. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  19. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  20. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |