Home
Class 12
MATHS
If f(x)=1+1/x int1^x f(t)dt, then the va...

If `f(x)=1+1/x int_1^x f(t)dt`, then the value of `f(e^(-1))` is (a) `1` (b) `0` (c) `-1` (d) none of these

A

`1`

B

`0`

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(e^{-1}) \) given the function defined as: \[ f(x) = 1 + \frac{1}{x} \int_1^x f(t) \, dt \] ### Step-by-Step Solution: 1. **Multiply both sides by \( x \)**: \[ x f(x) = x + \int_1^x f(t) \, dt \] 2. **Differentiate both sides with respect to \( x \)**: Using the product rule on the left side and Leibniz's rule on the right side: \[ \frac{d}{dx}(x f(x)) = f(x) + x f'(x) \] \[ \frac{d}{dx}\left(x + \int_1^x f(t) \, dt\right) = 1 + f(x) \] Therefore, we have: \[ f(x) + x f'(x) = 1 + f(x) \] 3. **Simplify the equation**: By cancelling \( f(x) \) from both sides, we get: \[ x f'(x) = 1 \] 4. **Solve for \( f'(x) \)**: \[ f'(x) = \frac{1}{x} \] 5. **Integrate to find \( f(x) \)**: \[ f(x) = \int \frac{1}{x} \, dx = \log x + C \] 6. **Determine the constant \( C \)**: Substitute \( x = 1 \) into the original function to find \( f(1) \): \[ f(1) = 1 + \frac{1}{1} \int_1^1 f(t) \, dt \] The integral from 1 to 1 is 0: \[ f(1) = 1 \] Now substituting into \( f(x) = \log x + C \): \[ 1 = \log(1) + C \implies C = 1 \] 7. **Final expression for \( f(x) \)**: \[ f(x) = \log x + 1 \] 8. **Find \( f(e^{-1}) \)**: Substitute \( x = e^{-1} \): \[ f(e^{-1}) = \log(e^{-1}) + 1 = -1 + 1 = 0 \] ### Conclusion: The value of \( f(e^{-1}) \) is \( 0 \).

To solve the problem, we need to find the value of \( f(e^{-1}) \) given the function defined as: \[ f(x) = 1 + \frac{1}{x} \int_1^x f(t) \, dt \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int_(0)^(x)(x-t)f^(')(t)dt The value of f(0)+f^(')(0) equal (a) -1 (b) 0 (c) 1 (d) none of these

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f^(prime)(x)=f(x)+int_0^1f(x)dx ,gi v e nf(0)=1, then the value of f((log)_e 2) is (a) 1/(3+e) (b) (5-e)/(3-e) (c) (2+e)/(e-2) (d) none of these

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(1/x)+x^2f(x)=0, xgt0 and a=int_(1/x)^x f(t)dt, 1/2lexle2 , then a= (A) 1 (B) 0 (C) f(2)-f(1/2) (D) none of these

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. Let f(x) =int1^x e^t/tdt,x in R^+ . Then complete set of valuesof x f...

    Text Solution

    |

  2. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  3. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  4. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  5. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  6. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  7. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  8. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  9. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  10. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  11. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  12. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  13. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  14. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  15. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  16. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  17. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  18. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  19. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  20. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |