Home
Class 12
MATHS
If [f((sqrt(3))/2)] is [.] denotes the g...

If `[f((sqrt(3))/2)]` is [.] denotes the greatest integer function) 4 (b) 5 (c) 6 (d) `-7`

A

`4`

B

`5`

C

`6`

D

`-7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{\sqrt{3}}{2}\right) \) where \( f(x) \) is defined by the integral \[ f(x) = \int_{\cos x}^1 t^2 f(t) \, dt \] Given that \( f(x) = 1 - \cos x \). ### Step-by-Step Solution 1. **Set Up the Integral**: We start with the equation: \[ f(x) = \int_{\cos x}^1 t^2 f(t) \, dt \] We also know that \( f(x) = 1 - \cos x \). 2. **Differentiate Both Sides**: Differentiate both sides with respect to \( x \): \[ \frac{d}{dx} f(x) = \frac{d}{dx} \left( \int_{\cos x}^1 t^2 f(t) \, dt \right) \] By the Leibniz rule for differentiation under the integral sign, we have: \[ \frac{d}{dx} \int_{\cos x}^1 t^2 f(t) \, dt = -\sin x \cdot \cos^2 x f(\cos x) \] Thus, we obtain: \[ f'(\cos x) \cdot (-\sin x) = -\sin x + \sin x \] 3. **Simplify the Equation**: This simplifies to: \[ f'(\cos x) \cdot (-\sin x) = \sin x \] Therefore, we can write: \[ f'(\cos x) = \frac{1}{\cos^2 x} \] 4. **Find \( f(\cos x) \)**: We have established that: \[ f(\cos x) = \frac{1}{\cos^2 x} \] 5. **Substitute \( x \)**: Now we need to find \( f\left(\frac{\sqrt{3}}{2}\right) \). We set \( \cos x = \frac{\sqrt{3}}{2} \), which gives us \( x = \frac{\pi}{6} \). 6. **Calculate \( f\left(\frac{\sqrt{3}}{2}\right) \)**: Substitute \( \cos x = \frac{\sqrt{3}}{2} \) into the equation: \[ f\left(\frac{\sqrt{3}}{2}\right) = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \] 7. **Evaluate the Greatest Integer Function**: Now we evaluate the greatest integer function: \[ \left\lfloor f\left(\frac{\sqrt{3}}{2}\right) \right\rfloor = \left\lfloor \frac{4}{3} \right\rfloor = 1 \] ### Final Answer: The value of \( f\left(\frac{\sqrt{3}}{2}\right) \) is \( 1 \).

To solve the problem, we need to find the value of \( f\left(\frac{\sqrt{3}}{2}\right) \) where \( f(x) \) is defined by the integral \[ f(x) = \int_{\cos x}^1 t^2 f(t) \, dt \] Given that \( f(x) = 1 - \cos x \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_(cosx)^1(t^2f(t)dt=1-cosx AA x in (0,pi/2) , then the value of [f((sqrt(3))/4)] is [.] denotes the greatest integer function) 4 (b) 5 (c) 6 (d) -7

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer function) has pi as its fundamental period, then

If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer function) has pi as its fundamental period, then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

The period of the function f(x)=[6x+7]+cospix-6x , where [dot] denotes the greatest integer function is: (a)3 (b) 2 pi (c) 2 (d) none of these

If f(x)=sin([x]pi)/(x^2+x+1) where [.] denotes the greatest integer function, then (A) f is one-one (B) f is not one-one and not constant (C) f is a constant function (D) none of these

Write the piecewise definition of the function: f(x)= [sqrt(x)] , where [.] denotes the greatest integer function.

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If int0^xf(t) dt=x+intx^1 tf(t)dt, then the value of f(1)

    Text Solution

    |

  2. If f(x)=1+1/x int1^x f(t)dt, then the value of f(e^(-1)) is (a) 1 (b) ...

    Text Solution

    |

  3. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  4. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  5. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  6. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  7. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  8. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  9. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  10. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  11. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  12. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  13. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  14. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  15. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  16. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  17. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  18. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  19. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  20. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |