Home
Class 12
MATHS
The value of int(1/e->tanx) (tdt)/(1+t^2...

The value of `int_(1/e->tanx) (tdt)/(1+t^2) + int_(1/e->cotx) (dt)/(t*(1+t^2)) =`

A

(a) 0

B

(b) 2

C

(c) 1

D

(c) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the following expression: \[ \int_{1/e}^{\tan x} \frac{t \, dt}{1 + t^2} + \int_{1/e}^{\cot x} \frac{dt}{t(1 + t^2)} \] ### Step 1: Evaluate the first integral We start with the first integral: \[ I_1 = \int_{1/e}^{\tan x} \frac{t \, dt}{1 + t^2} \] To solve this integral, we can use the substitution \( p = 1 + t^2 \). Then, differentiating gives: \[ dp = 2t \, dt \quad \Rightarrow \quad dt = \frac{dp}{2t} \] Substituting \( t = \sqrt{p - 1} \) into the integral, we have: \[ I_1 = \int_{1/e}^{\tan x} \frac{t \cdot \frac{dp}{2t}}{p} = \frac{1}{2} \int_{1 + (1/e)^2}^{1 + \tan^2 x} \frac{dp}{p} \] The limits change as follows: - When \( t = 1/e \), \( p = 1 + (1/e)^2 = 1 + 1/e^2 \) - When \( t = \tan x \), \( p = 1 + \tan^2 x = \sec^2 x \) Thus, we can rewrite the integral: \[ I_1 = \frac{1}{2} \left[ \log p \right]_{1 + 1/e^2}^{\sec^2 x} = \frac{1}{2} \left( \log(\sec^2 x) - \log(1 + 1/e^2) \right) \] Using the property of logarithms, we can simplify this to: \[ I_1 = \frac{1}{2} \left( \log\left(\frac{\sec^2 x}{1 + 1/e^2}\right) \right) \] ### Step 2: Evaluate the second integral Now we evaluate the second integral: \[ I_2 = \int_{1/e}^{\cot x} \frac{dt}{t(1 + t^2)} \] This integral can be split using the property of logarithms: \[ I_2 = \int_{1/e}^{\cot x} \left( \frac{1}{t} - \frac{t}{1 + t^2} \right) dt \] Calculating each part separately: 1. The first part: \[ \int_{1/e}^{\cot x} \frac{1}{t} dt = \left[ \log t \right]_{1/e}^{\cot x} = \log(\cot x) - \log(1/e) = \log(\cot x) + 1 \] 2. The second part: \[ \int_{1/e}^{\cot x} \frac{t}{1 + t^2} dt \] Using the same substitution \( p = 1 + t^2 \): \[ = \frac{1}{2} \left[ \log(1 + t^2) \right]_{1/e}^{\cot x} = \frac{1}{2} \left( \log(1 + \cot^2 x) - \log(1 + 1/e^2) \right) \] Since \( 1 + \cot^2 x = \csc^2 x \), we have: \[ = \frac{1}{2} \left( \log(\csc^2 x) - \log(1 + 1/e^2) \right) \] ### Step 3: Combine the results Now, we can combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 = \frac{1}{2} \left( \log\left(\frac{\sec^2 x}{1 + 1/e^2}\right) \right) + \left( \log(\cot x) + 1 - \frac{1}{2} \left( \log(\csc^2 x) - \log(1 + 1/e^2) \right) \right) \] This simplifies to: \[ I = \frac{1}{2} \log\left(\frac{\sec^2 x}{1 + 1/e^2}\right) + \log(\cot x) + 1 - \frac{1}{2} \log(\csc^2 x) + \frac{1}{2} \log(1 + 1/e^2) \] ### Step 4: Final simplification After simplifying the logarithmic terms, we find that the expression reduces to: \[ I = 1 \] ### Conclusion Thus, the final answer is: \[ \boxed{1} \]

To solve the given problem, we need to evaluate the following expression: \[ \int_{1/e}^{\tan x} \frac{t \, dt}{1 + t^2} + \int_{1/e}^{\cot x} \frac{dt}{t(1 + t^2)} \] ### Step 1: Evaluate the first integral ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

int(dt)/( sqrt(t-1))

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

(1)/(3)int(t*dt)/(sqrt(1+t))

(1)/(2)int(dt)/((1+t))

int(dt)/( sqrt(1-t)-t)

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

int(1)/(sqrt(t)+1)dt

Find the value of ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)

If int_0^1e^t/(t+1) dt=a , then int_(b-1)^b e^(-t)/(t-b-1) dt =

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b...

    Text Solution

    |

  2. f(x) is continuous function for all real values of x and satisfies int...

    Text Solution

    |

  3. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  4. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  5. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  6. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  7. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  8. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  9. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  10. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  11. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  12. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  13. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  14. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  15. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  16. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  17. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  18. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  19. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  20. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |