Home
Class 12
MATHS
A function f is defined by f(x) = int0^p...

A function f is defined by `f(x) = int_0^pi cos t cos(x-t)dt,0 <= x <= 2 pi` then which of the following.hold(s) good?

A

`(pi)/4`

B

`(pi)/2`

C

`(-pi)/2`

D

`(-pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function defined by the integral: \[ f(x) = \int_0^\pi \cos t \cos(x - t) \, dt \] for \( 0 \leq x \leq 2\pi \). ### Step 1: Use the product-to-sum identities We can use the product-to-sum identities to simplify the integral. The identity states: \[ \cos A \cos B = \frac{1}{2} (\cos(A + B) + \cos(A - B)) \] Applying this to our function: \[ \cos t \cos(x - t) = \frac{1}{2} \left( \cos(t + (x - t)) + \cos(t - (x - t)) \right) = \frac{1}{2} \left( \cos x + \cos(2t - x) \right) \] ### Step 2: Rewrite the integral Now, substituting this back into the integral: \[ f(x) = \int_0^\pi \cos t \cos(x - t) \, dt = \frac{1}{2} \int_0^\pi \left( \cos x + \cos(2t - x) \right) dt \] ### Step 3: Evaluate the integral We can separate the integral: \[ f(x) = \frac{1}{2} \left( \int_0^\pi \cos x \, dt + \int_0^\pi \cos(2t - x) \, dt \right) \] The first integral is straightforward: \[ \int_0^\pi \cos x \, dt = \cos x \cdot \pi \] For the second integral, we can use a substitution. Let \( u = 2t - x \), then \( du = 2 dt \) or \( dt = \frac{du}{2} \). When \( t = 0 \), \( u = -x \) and when \( t = \pi \), \( u = 2\pi - x \): \[ \int_0^\pi \cos(2t - x) \, dt = \frac{1}{2} \int_{-x}^{2\pi - x} \cos u \, du \] Evaluating this integral gives: \[ \frac{1}{2} [\sin u]_{-x}^{2\pi - x} = \frac{1}{2} (\sin(2\pi - x) - \sin(-x)) = \frac{1}{2} (\sin x + \sin x) = \sin x \] ### Step 4: Combine results Now substituting back into our expression for \( f(x) \): \[ f(x) = \frac{1}{2} \left( \pi \cos x + \sin x \right) \] ### Step 5: Analyze the function Now we can analyze \( f(x) \): 1. The function \( f(x) \) is periodic with period \( 2\pi \). 2. To find the minimum value, we can differentiate \( f(x) \) and set it to zero. ### Step 6: Find critical points Setting the derivative \( f'(x) = 0 \): \[ f'(x) = -\frac{\pi}{2} \sin x + \frac{1}{2} \cos x = 0 \] This gives: \[ \pi \sin x = \cos x \quad \Rightarrow \quad \tan x = \frac{1}{\pi} \] ### Step 7: Evaluate minimum value The minimum value of \( f(x) \) occurs at the critical points found above. Evaluating \( f(x) \) at these points will give us the minimum value. ### Conclusion Thus, we find that the function has a minimum value of \( -\frac{\pi}{2} \) at some point in the interval \( [0, 2\pi] \). ### Final Answer The correct option is that the minimum value of \( f(x) \) is \( -\frac{\pi}{2} \). ---

To solve the problem, we need to evaluate the function defined by the integral: \[ f(x) = \int_0^\pi \cos t \cos(x - t) \, dt \] for \( 0 \leq x \leq 2\pi \). ### Step 1: Use the product-to-sum identities We can use the product-to-sum identities to simplify the integral. The identity states: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

A differentiable function satisfies f(x) = int_(0)^(x) (f(t) cot t - cos(t - x))dt . Which of the following hold(s) good?

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^2-3t+2)dt,x in [1,3] Then the range of f(x), is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

Difference between the greatest and least values opf the function f (x) = int _(0)^(x) (cos ^(2) t + cos t +2) dt in the interval [0, 2pi] is K pi, then K is equal to:

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Suppose f(x) and g(x) are two continuous functions defined for 0<=x<=1 .Given, f(x)=int_0^1 e^(x+1) .f(t) dt and g(x)=int_0^1 e^(x+1) *g(t) dt+x The value of f( 1) equals

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

Let f ( x) = int _ 0 ^ x g (t) dt , where g is a non - zero even function . If f(x + 5 ) = g (x) , then int _ 0 ^ x f (t ) dt equals :

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  2. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  3. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  4. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  5. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  6. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  7. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  8. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  9. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  10. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  11. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  12. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  13. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  14. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  15. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  16. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  17. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  18. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  19. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  20. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |