Home
Class 12
MATHS
If f' is a differentiable function satis...

If `f'` is a differentiable function satisfying `f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2` then the value of `f(pi)` is equal to

A

`-(sqrt(3))/2`

B

`-1/2`

C

`(sqrt(3))/2`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(\pi) \) given the function defined by the equation: \[ f(x) = \int_{0}^{x} \sqrt{1 - f^2(t)} \, dt + \frac{1}{2} \] ### Step 1: Differentiate the equation We start by differentiating both sides of the equation with respect to \( x \): \[ f'(x) = \frac{d}{dx} \left( \int_{0}^{x} \sqrt{1 - f^2(t)} \, dt + \frac{1}{2} \right) \] Using the Leibniz rule for differentiation under the integral sign, we have: \[ f'(x) = \sqrt{1 - f^2(x)} \] ### Step 2: Rearranging the equation We can rearrange this equation to isolate \( f'(x) \): \[ f'(x) = \sqrt{1 - f^2(x)} \] ### Step 3: Separate variables Now, we separate the variables by dividing both sides by \( \sqrt{1 - f^2(x)} \): \[ \frac{f'(x)}{\sqrt{1 - f^2(x)}} = 1 \] ### Step 4: Integrate both sides Next, we integrate both sides with respect to \( x \): \[ \int \frac{f'(x)}{\sqrt{1 - f^2(x)}} \, dx = \int 1 \, dx \] Using the substitution \( f(x) = t \), we have \( f'(x) \, dx = dt \): \[ \int \frac{1}{\sqrt{1 - t^2}} \, dt = x + C \] The integral on the left side is known to be \( \sin^{-1}(t) \): \[ \sin^{-1}(f(x)) = x + C \] ### Step 5: Solve for \( f(x) \) Now, we solve for \( f(x) \): \[ f(x) = \sin(x + C) \] ### Step 6: Determine the constant \( C \) To find \( C \), we use the initial condition. We substitute \( x = 0 \) into the original equation: \[ f(0) = \int_{0}^{0} \sqrt{1 - f^2(t)} \, dt + \frac{1}{2} = 0 + \frac{1}{2} = \frac{1}{2} \] Now substituting \( x = 0 \) into our expression for \( f(x) \): \[ f(0) = \sin(0 + C) = \sin(C) \] Setting this equal to \( \frac{1}{2} \): \[ \sin(C) = \frac{1}{2} \] This gives us \( C = \frac{\pi}{6} \) (since \( \sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} \)). ### Step 7: Final expression for \( f(x) \) Now we have: \[ f(x) = \sin\left(x + \frac{\pi}{6}\right) \] ### Step 8: Calculate \( f(\pi) \) Finally, we calculate \( f(\pi) \): \[ f(\pi) = \sin\left(\pi + \frac{\pi}{6}\right) = \sin\left(\frac{7\pi}{6}\right) \] Since \( \sin\left(\frac{7\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2} \). Thus, the value of \( f(\pi) \) is: \[ \boxed{-\frac{1}{2}} \]

To solve the problem, we need to find the value of \( f(\pi) \) given the function defined by the equation: \[ f(x) = \int_{0}^{x} \sqrt{1 - f^2(t)} \, dt + \frac{1}{2} \] ### Step 1: Differentiate the equation We start by differentiating both sides of the equation with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e^(2)+int_(0)^(x)(f(t)^(2)+(f'(t))^(2))dtAAx inR . The values f(1) can take is/are

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |