Home
Class 12
MATHS
If int 0^1e^(x^2)(x-alpha)dx=0, then...

If `int _0^1e^(x^2)(x-alpha)dx=0`, then

A

`1 lt alpha lt 2`

B

`alpha lt 0`

C

`0 lt alpha lt 1`

D

`alpha=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the parameter \( \alpha \) such that the integral \[ \int_0^1 e^{x^2}(x - \alpha) \, dx = 0. \] ### Step-by-Step Solution: 1. **Set Up the Equation**: We start with the equation given in the problem: \[ \int_0^1 e^{x^2}(x - \alpha) \, dx = 0. \] This can be rewritten as: \[ \int_0^1 e^{x^2} x \, dx = \alpha \int_0^1 e^{x^2} \, dx. \] 2. **Evaluate the Integral**: We need to evaluate both integrals on the left and right sides. - Let \( I_1 = \int_0^1 e^{x^2} x \, dx \). - Let \( I_2 = \int_0^1 e^{x^2} \, dx \). To evaluate \( I_1 \), we can use the substitution \( t = x^2 \), which gives \( dt = 2x \, dx \) or \( dx = \frac{dt}{2\sqrt{t}} \). Changing the limits: - When \( x = 0 \), \( t = 0 \). - When \( x = 1 \), \( t = 1 \). Thus, we have: \[ I_1 = \int_0^1 e^{t} \frac{1}{2} dt = \frac{1}{2} \left[ e^t \right]_0^1 = \frac{1}{2}(e - 1). \] 3. **Evaluate \( I_2 \)**: For \( I_2 \): \[ I_2 = \int_0^1 e^{x^2} \, dx. \] This integral does not have a simple closed form, but we can denote it as \( I_2 \). 4. **Substitute Back**: Now substituting back into our equation: \[ \frac{1}{2}(e - 1) = \alpha I_2. \] Therefore, we can express \( \alpha \) as: \[ \alpha = \frac{1}{2} \frac{(e - 1)}{I_2}. \] 5. **Determine the Range of \( \alpha \)**: To find the range of \( \alpha \), we need to analyze \( I_2 \). Since \( e^{x^2} \) is an increasing function for \( x \) in the interval [0, 1], we can establish bounds for \( I_2 \): - At \( x = 0 \), \( e^{x^2} = 1 \). - At \( x = 1 \), \( e^{x^2} = e \). Therefore, we have: \[ 1 < I_2 < e. \] This means: \[ \alpha = \frac{1}{2} \frac{(e - 1)}{I_2} \text{ will be bounded by } \frac{1}{2}(e - 1) \text{ and } 0. \] Since \( I_2 \) is between 1 and \( e \), we can conclude: \[ 0 < \alpha < \frac{1}{2}(e - 1). \] ### Conclusion: Thus, the range of \( \alpha \) is: \[ \alpha \in \left(0, \frac{1}{2}(e - 1)\right). \]

To solve the problem, we need to find the range of the parameter \( \alpha \) such that the integral \[ \int_0^1 e^{x^2}(x - \alpha) \, dx = 0. \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If int_0^1 e^(x^2)(x-alpha)dx=0 , then (a) alphalt2 (b) alphalt0 (c)"" 0ltalphalt1 (d) alpha="0

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int_0^2 e^(x/2) dx

int_0^1 e^(2-3x)dx

int_0^1 e^x dx

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int_0^1e^ (-x^2) dx=a , then find the value of int_0^1x^2e^ (-x^2) dx in terms of a .

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let I= int_(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x^(2)+1) dx, is

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |