Home
Class 12
MATHS
The value of the integral int0^oo(xlogx)...

The value of the integral `int_0^oo(xlogx)/((1+x^2)^2)dx ` (a) 0 (b) log 7 (c) 5 log 13 (d) none of these

A

`0`

B

`log7`

C

`5 log 13`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^\infty \frac{x \log x}{(1 + x^2)^2} \, dx, \] we will use the substitution \( x = \frac{1}{t} \). ### Step 1: Substitution Let \( x = \frac{1}{t} \). Then, the differential \( dx \) becomes: \[ dx = -\frac{1}{t^2} \, dt. \] ### Step 2: Change of Limits When \( x \to 0 \), \( t \to \infty \), and when \( x \to \infty \), \( t \to 0 \). Thus, the limits of integration change from \( 0 \) to \( \infty \) to \( \infty \) to \( 0 \). ### Step 3: Rewrite the Integral Substituting into the integral, we have: \[ I = \int_\infty^0 \frac{\frac{1}{t} \log \left(\frac{1}{t}\right)}{\left(1 + \left(\frac{1}{t}\right)^2\right)^2} \left(-\frac{1}{t^2}\right) dt. \] ### Step 4: Simplify the Integral Now, we simplify the expression: \[ \log\left(\frac{1}{t}\right) = -\log t, \] and \[ 1 + \left(\frac{1}{t}\right)^2 = 1 + \frac{1}{t^2} = \frac{t^2 + 1}{t^2}. \] Thus, \[ \left(1 + \left(\frac{1}{t}\right)^2\right)^2 = \left(\frac{t^2 + 1}{t^2}\right)^2 = \frac{(t^2 + 1)^2}{t^4}. \] Substituting these into the integral gives: \[ I = \int_\infty^0 \frac{\frac{1}{t} (-\log t)}{\frac{(t^2 + 1)^2}{t^4}} \left(-\frac{1}{t^2}\right) dt. \] ### Step 5: Rearranging the Integral This simplifies to: \[ I = \int_\infty^0 \frac{\log t}{t} \cdot \frac{t^4}{(t^2 + 1)^2} \cdot \frac{1}{t^2} dt = \int_\infty^0 \frac{t^2 \log t}{(t^2 + 1)^2} dt. \] ### Step 6: Change Limits Reversing the limits of integration gives: \[ I = \int_0^\infty \frac{t^2 \log t}{(t^2 + 1)^2} dt. \] ### Step 7: Combine Integrals Now we have: \[ I = -I. \] This implies: \[ 2I = 0 \implies I = 0. \] ### Conclusion Thus, the value of the integral is: \[ \boxed{0}. \]

To solve the integral \[ I = \int_0^\infty \frac{x \log x}{(1 + x^2)^2} \, dx, \] we will use the substitution \( x = \frac{1}{t} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_0^oo(xlogx)/((1+x^2)^2)dx ,is (a)0 (b) log 7 (c) 5 log 13 (d) none of these

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral int_(0)^(2) (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of integral int_(1)^(e) (log x)^(3)dx , is

lim_(x -> oo)(x(log(x)^3)/(1+x+x^2)) equals 0 (b) -1 (c) 1 (d) none of these

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

The value of the integral int_0^1e^x^2_dx lies in the interval (a) (0,1) (b) (-1,0) (c) (1, e) (d) none of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |