Home
Class 12
MATHS
int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx...

`int_0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx` is equal to (a) `-pi/2logpi` (b) 0 (c) `pi/2log2` (d) none of these

A

`-(pi)/2 In pi`

B

`0`

C

`(pi)/2 In 2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^\infty \left( \frac{\pi}{1 + \pi^2 x^2} - \frac{1}{1 + x^2} \right) \log x \, dx, \] we will break it down into manageable steps. ### Step 1: Rewrite the Integral We can express the integral \( I \) as: \[ I = \int_0^\infty \frac{\pi \log x}{1 + \pi^2 x^2} \, dx - \int_0^\infty \frac{\log x}{1 + x^2} \, dx. \] Let’s denote these two integrals as: \[ I_1 = \int_0^\infty \frac{\pi \log x}{1 + \pi^2 x^2} \, dx, \] \[ I_2 = \int_0^\infty \frac{\log x}{1 + x^2} \, dx. \] Thus, we have: \[ I = I_1 - I_2. \] ### Step 2: Change of Variable in \( I_1 \) For \( I_1 \), we will perform the substitution \( y = \pi x \). Then, \( dy = \pi \, dx \) or \( dx = \frac{dy}{\pi} \). The limits remain the same (0 to ∞). Thus, \[ I_1 = \int_0^\infty \frac{\pi \log\left(\frac{y}{\pi}\right)}{1 + y^2} \cdot \frac{dy}{\pi} = \int_0^\infty \frac{\log y - \log \pi}{1 + y^2} \, dy. \] This can be split into two integrals: \[ I_1 = \int_0^\infty \frac{\log y}{1 + y^2} \, dy - \log \pi \int_0^\infty \frac{1}{1 + y^2} \, dy. \] ### Step 3: Evaluate the Integrals The integral \( \int_0^\infty \frac{1}{1 + y^2} \, dy \) evaluates to \( \frac{\pi}{2} \). Thus, \[ I_1 = \int_0^\infty \frac{\log y}{1 + y^2} \, dy - \frac{\pi}{2} \log \pi. \] ### Step 4: Evaluate \( I_2 \) The integral \( I_2 \) can be evaluated similarly: \[ I_2 = \int_0^\infty \frac{\log x}{1 + x^2} \, dx. \] Notice that \( I_2 \) is equal to \( I_1 \) because both integrals are symmetric in form. ### Step 5: Combine the Results Now substituting back into our expression for \( I \): \[ I = \left( \int_0^\infty \frac{\log y}{1 + y^2} \, dy - \frac{\pi}{2} \log \pi \right) - \int_0^\infty \frac{\log x}{1 + x^2} \, dx. \] Since \( I_1 = I_2 \): \[ I = 0 - \frac{\pi}{2} \log \pi. \] ### Final Result Thus, we conclude that: \[ I = -\frac{\pi}{2} \log \pi. \] ### Answer The answer is (a) \(-\frac{\pi}{2} \log \pi\). ---

To solve the integral \[ I = \int_0^\infty \left( \frac{\pi}{1 + \pi^2 x^2} - \frac{1}{1 + x^2} \right) \log x \, dx, \] we will break it down into manageable steps. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(x->1)(1-x^2)/(sin2pix) is equal to (a) 1/(2pi) (b) -1/pi (c) (-2)/pi (d) none of these

lim_(x->1)(1-x^2)/(sin2pix) is equal to (a) 1/(2pi) (b) -1/pi (c) (-2)/pi (d) none of these

If n=2m+1,m in N uu {0}, then int_0^(pi/2)(sin nx)/(sin x) dx is equal to (i) pi (ii) pi/2 (iii) pi/4 (iv) none of these

int_0^(pi/2)1/(1+tan^2x)dx

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

int_0^pi dx/(1-2acosx+a^2), alt1 is equal to (A) (pialog2)/4 (B) (4pi)/(2-a^2) (C) pi/(1-a^2) (D) none of these

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to (a) 0 (b) 2pi (c) pi (d) none of these

int_0^(pi//2)1/(1+cot^3x)dx is equal to a 0 b. 1 c. pi//2 d. pi//4

(lim)_(xrarr0)(sin(picos^2x)/(x^2)) is equal to (a) -pi (b) pi (c) pi/2 (d) 1

int_0^1d/(dx){sin^(-1)((2x)/(1+x^2))}dx is equal to 0 (b) pi (c) pi//2 (d) pi//4

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |