Home
Class 12
MATHS
If A=int0^pi cosx/(x+2)^2 \ dx, then int...

If `A=int_0^pi cosx/(x+2)^2 \ dx`, then `int_0^(pi//2) (sin 2x)/(x+1) \ dx` is equal to

A

`1/2+1/(pi+2)-A`

B

`1/(pi+2)-A`

C

`1+1/(pi+2)-A`

D

`A-1/2-1/(pi+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{x+1} \, dx \), we will use a substitution and integration by parts. Let's go through the steps: ### Step 1: Substitution Let \( t = 2x \). Then, \( dt = 2dx \) or \( dx = \frac{dt}{2} \). The limits of integration change as follows: - When \( x = 0 \), \( t = 0 \). - When \( x = \frac{\pi}{2} \), \( t = \pi \). Thus, we can rewrite the integral: \[ I = \int_0^{\pi} \frac{\sin t}{\frac{t}{2} + 1} \cdot \frac{dt}{2} \] This simplifies to: \[ I = \frac{1}{2} \int_0^{\pi} \frac{\sin t}{\frac{t}{2} + 1} \, dt \] ### Step 2: Simplifying the Integral Now, we can rewrite the integral: \[ I = \int_0^{\pi} \frac{\sin t}{t + 2} \, dt \] ### Step 3: Integration by Parts Let: - \( u = \sin t \) ⇒ \( du = \cos t \, dt \) - \( dv = \frac{1}{t + 2} \, dt \) ⇒ \( v = \ln(t + 2) \) Using integration by parts: \[ I = \left[ \sin t \ln(t + 2) \right]_0^{\pi} - \int_0^{\pi} \ln(t + 2) \cos t \, dt \] ### Step 4: Evaluating the Boundary Terms Now, we evaluate the boundary terms: \[ \left[ \sin t \ln(t + 2) \right]_0^{\pi} = \sin(\pi) \ln(\pi + 2) - \sin(0) \ln(2) = 0 - 0 = 0 \] Thus, we have: \[ I = - \int_0^{\pi} \ln(t + 2) \cos t \, dt \] ### Step 5: Relating to Given Integral \( A \) We know from the problem statement that: \[ A = \int_0^{\pi} \frac{\cos x}{(x + 2)^2} \, dx \] By changing the variable in the integral \( A \) to \( t = x \), we can see that: \[ \int_0^{\pi} \frac{\cos t}{(t + 2)^2} \, dt = A \] ### Final Step: Conclusion Thus, we can conclude that: \[ I = -A \] ### Summary The value of the integral \( \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{x + 1} \, dx \) is equal to \( -A \).

To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin 2x}{x+1} \, dx \), we will use a substitution and integration by parts. Let's go through the steps: ### Step 1: Substitution Let \( t = 2x \). Then, \( dt = 2dx \) or \( dx = \frac{dt}{2} \). The limits of integration change as follows: - When \( x = 0 \), \( t = 0 \). - When \( x = \frac{\pi}{2} \), \( t = \pi \). Thus, we can rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) (x^2+x)dx

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_0^(2pi) sin^2x dx

int_(0)^(pi//2) x sin x cos x dx

Evaluate int_0^(pi/2) sin^2x dx

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

Evaluate: int_0^(pi/2)(x+sinx)/(1+cosx) dx

int_(0)^(pi) [2sin x]dx=

Evaluate: int_0^(pi//2)(sin x)/(1+cos^2x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |