Home
Class 12
MATHS
If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1...

If `I_1=int_0^1(e^x)/(1+x) dx`aand `I_2=int_0^1 x^2/(e^(x^3)(2-x^3)) dx` then `I_1/I_2` is

A

`3//e`

B

`e//3`

C

`3e`

D

`1//3e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and then find the ratio \( \frac{I_1}{I_2} \). ### Step 1: Evaluate \( I_1 \) Given: \[ I_1 = \int_0^1 \frac{e^x}{1+x} \, dx \] This integral does not have a straightforward elementary solution, so we will keep it as is for now. ### Step 2: Evaluate \( I_2 \) Given: \[ I_2 = \int_0^1 \frac{x^2}{e^{x^3}(2-x^3)} \, dx \] To simplify this, we use the substitution \( t = 1 - x^3 \). Then, we have: \[ x^3 = 1 - t \quad \Rightarrow \quad dx = -\frac{dt}{3x^2} \] From the substitution, when \( x = 0 \), \( t = 1 \) and when \( x = 1 \), \( t = 0 \). Now, we need to express \( x^2 \) in terms of \( t \): \[ x^2 = (1 - t)^{2/3} \] Thus, we can rewrite \( I_2 \): \[ I_2 = \int_1^0 \frac{(1-t)^{2/3}}{e^{1-t}(2 - (1-t))} \left(-\frac{dt}{3(1-t)^{2/3}}\right) \] This simplifies to: \[ I_2 = \frac{1}{3} \int_0^1 \frac{1}{e^{1-t}(1+t)} \, dt \] ### Step 3: Relate \( I_1 \) and \( I_2 \) Notice that: \[ I_1 = \int_0^1 \frac{e^x}{1+x} \, dx \] and we have transformed \( I_2 \) into: \[ I_2 = \frac{1}{3} \int_0^1 \frac{e^t}{t+1} \, dt \] ### Step 4: Find the ratio \( \frac{I_1}{I_2} \) Now we can compute the ratio: \[ \frac{I_1}{I_2} = \frac{\int_0^1 \frac{e^x}{1+x} \, dx}{\frac{1}{3} \int_0^1 \frac{e^t}{t+1} \, dt} \] This simplifies to: \[ \frac{I_1}{I_2} = 3 \cdot \frac{\int_0^1 \frac{e^x}{1+x} \, dx}{\int_0^1 \frac{e^t}{t+1} \, dt} \] Since the integrals are equal, we find: \[ \frac{I_1}{I_2} = 3 \] ### Conclusion Thus, the final result is: \[ \frac{I_1}{I_2} = 3 \]

To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and then find the ratio \( \frac{I_1}{I_2} \). ### Step 1: Evaluate \( I_1 \) Given: \[ I_1 = \int_0^1 \frac{e^x}{1+x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

L e tI_1=int_0^1(e^xdx)/(1+x) a n dI_2=int_0^1(x^2dx)/(e^(x^3)(2-x^3))dot tehn (I_1)/(I_2) is equal to (a)3/e (b) e/3 (c) 3e (d) 1/(3e)

Let I_1=int_0^1 e^x/(1+x)dx and I_2=int_0^1(x^2e^(x^2))/(2-x^3)dx Statement-1: I_1/I_2=3e Statement-2: int_a^b f(x)dx=int_a^b f(a+b-x)dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

int_0^1 x^2 e^(2x) dx

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I_1=int_0^1(1+x^8)/(1+x^4)dxa n dI_2=int_0^1(1+x^9)/(1+x^3)dx ,"t h e n" I_2

int_0^1 e^(2-3x)dx

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

If I_1=int_0^(3pi) (cos^2x) dx and I_2 =int_0^pi (cos^2x) dx then (a) I_1=I_2 (2) I_1=2 I_2 (3) I_1=5I_2 (4) I_1=3I_2

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |