Home
Class 12
MATHS
Let f beintegrable over [0,a] for any re...

Let `f` beintegrable over `[0,a]` for any real value of `a`.
If `I_(1)=int_(0)^(pi//2)cos theta f(sin theta +cos^(2) theta) d theta` and `I_(2)=int_(0)^(pi//2) sin 2 theta f(sin theta+cos^(2) theta) d theta`, then

A

`I_(1)=-2I_(2)`

B

`I_(1)=I_(2)`

C

`2I_(1)=I_(2)`

D

`I_(1)=-I_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the integrals \( I_1 \) and \( I_2 \) defined as follows: \[ I_1 = \int_0^{\frac{\pi}{2}} \cos \theta \, f(\sin \theta + \cos^2 \theta) \, d\theta \] \[ I_2 = \int_0^{\frac{\pi}{2}} \sin 2\theta \, f(\sin \theta + \cos^2 \theta) \, d\theta \] ### Step 1: Change of Variables for \( I_1 \) Let's perform a substitution in \( I_1 \). Let: \[ t = \sin \theta + \cos^2 \theta \] To find \( dt \), we differentiate \( t \): \[ dt = \cos \theta \, d\theta - 2\sin \theta \cos \theta \, d\theta = \cos \theta (1 - 2\sin \theta) \, d\theta \] ### Step 2: Determine the Limits of Integration Now, we need to find the limits of integration when \( \theta = 0 \) and \( \theta = \frac{\pi}{2} \): - When \( \theta = 0 \): \[ t = \sin(0) + \cos^2(0) = 0 + 1 = 1 \] - When \( \theta = \frac{\pi}{2} \): \[ t = \sin\left(\frac{\pi}{2}\right) + \cos^2\left(\frac{\pi}{2}\right) = 1 + 0 = 1 \] Thus, both limits are 1, which means the integral evaluates to 0. ### Step 3: Evaluate \( I_1 \) Now substituting back into the integral, we have: \[ I_1 = \int_0^{\frac{\pi}{2}} \cos \theta \, f(t) \, d\theta = \int_1^1 f(t) \, dt = 0 \] ### Step 4: Change of Variables for \( I_2 \) Now let's analyze \( I_2 \): \[ I_2 = \int_0^{\frac{\pi}{2}} \sin 2\theta \, f(\sin \theta + \cos^2 \theta) \, d\theta \] Using the same substitution \( t = \sin \theta + \cos^2 \theta \), we have: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] Thus, the differential \( d\theta \) can be expressed as: \[ d\theta = \frac{dt}{\cos \theta (1 - 2\sin \theta)} \] ### Step 5: Evaluate \( I_2 \) Substituting into \( I_2 \): \[ I_2 = \int_0^{\frac{\pi}{2}} 2 \sin \theta \cos \theta \, f(t) \, d\theta \] Using the limits we found earlier, we also see that: \[ I_2 = \int_1^1 f(t) \, dt = 0 \] ### Conclusion Since both integrals evaluate to zero, we have: \[ I_1 - I_2 = 0 \implies I_1 = I_2 \] Thus, the final result is: \[ I_1 = I_2 \]

To solve the problem, we need to find the relationship between the integrals \( I_1 \) and \( I_2 \) defined as follows: \[ I_1 = \int_0^{\frac{\pi}{2}} \cos \theta \, f(\sin \theta + \cos^2 \theta) \, d\theta \] \[ I_2 = \int_0^{\frac{\pi}{2}} \sin 2\theta \, f(\sin \theta + \cos^2 \theta) \, d\theta ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

int_0^(pi/4) (2sinthetacostheta)/(sin^4theta+cos^4theta)d theta

If f(x)=int_0^(pi/2)ln(1+xsin^2theta)/(sin^2theta) d theta, x >= 0 then :

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

Prove that: (a) (sin 2 theta)/(1+cos 2 theta)=tan theta (b) (1+sin 2 theta+cos 2theta)/(1+sin2 theta-cos 2 theta)=cot theta

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |