Home
Class 12
MATHS
The value of inta^b (x-a)^3(b-x)^4dx is ...

The value of `int_a^b (x-a)^3(b-x)^4dx` is (a) `((b-a)^4)/(6^4)` (b) `((b-a)^8)/(280)` (c) `((b-a)^7)/(7^3)` (d) none of these

A

`((b-a)^(4))/(6^(4))`

B

`((b-a)^(8))/280`

C

`((b-a)^(7))/(7^(3))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_a^b (x-a)^3 (b-x)^4 \, dx \), we can use a substitution method to simplify the integral. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = a + (b-a) t \), where \( t \) varies from 0 to 1 as \( x \) varies from \( a \) to \( b \). Then, the differential \( dx \) becomes \( (b-a) dt \). 2. **Change of Limits**: When \( x = a \), \( t = 0 \) and when \( x = b \), \( t = 1 \). 3. **Rewrite the Integral**: The integral becomes: \[ I = \int_0^1 \left((a + (b-a)t - a)^3 \cdot (b - (a + (b-a)t))^4\right) (b-a) dt \] Simplifying the terms: \[ I = \int_0^1 ((b-a)t)^3 \cdot ((b - a(1-t))^4) (b-a) dt \] \[ = (b-a)^5 \int_0^1 t^3 (1-t)^4 dt \] 4. **Evaluate the Integral**: The integral \( \int_0^1 t^3 (1-t)^4 dt \) can be evaluated using the Beta function: \[ \int_0^1 t^{m-1} (1-t)^{n-1} dt = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \] Here, \( m = 4 \) and \( n = 5 \): \[ \int_0^1 t^3 (1-t)^4 dt = \frac{\Gamma(4) \Gamma(5)}{\Gamma(9)} = \frac{3! \cdot 4!}{8!} = \frac{6 \cdot 24}{40320} = \frac{144}{40320} = \frac{1}{280} \] 5. **Final Result**: Substituting back into our expression for \( I \): \[ I = (b-a)^5 \cdot \frac{1}{280} = \frac{(b-a)^5}{280} \] Thus, the value of the integral \( \int_a^b (x-a)^3 (b-x)^4 \, dx \) is: \[ \frac{(b-a)^8}{280} \] ### Answer: (b) \(\frac{(b-a)^8}{280}\)

To solve the integral \( I = \int_a^b (x-a)^3 (b-x)^4 \, dx \), we can use a substitution method to simplify the integral. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = a + (b-a) t \), where \( t \) varies from 0 to 1 as \( x \) varies from \( a \) to \( b \). Then, the differential \( dx \) becomes \( (b-a) dt \). 2. **Change of Limits**: When \( x = a \), \( t = 0 \) and when \( x = b \), \( t = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(a)^(b)(x-a)^(3)(b-x)^(4)dx is ((b-a)^(m))/(n). Then (m, n) is

If 3x=a+b+c , then the value of (x-a)^3+\ (x-b)^3+\ (x-c)^3-3\ (x-a)(x-b)(x-c) is (a) a+b+c (b) (a-b)(b-c)(c-a) (c) 0 (d) None of these

The value of int_0^1(x^4(1-x)^4)/(1+x^2)dx is/are (a) (22)/7-pi (b) 2/(105) (c) 0 (d) (71)/(15)-(3pi)/2

int|x|^3\ dx is equal to (a) (- x^4)/4+C (b) (|x|^4)/4+C (c) (x^4)/4+C (d) none of these

The minimum value of f(x)=x^4-x^2-2x+6 is (a) 6 (b) 4 (c) 8 (d) none of these

The value of int_(-pi)^pisin^3xcos^2x\ dx\ is a. (pi^4)/2 b. (pi^4)/4 c. 0 d. none of these

4 7/8 is equal to (a) 4.78 (b) 4.87 (c) 4.875 (d) None of these

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

a^3 x 2a^2b x 3a b^5 is equal to: (a) a^6b^6 (b) 23 a^6b^6 (c) 6a^6b^6 (d) None of these

If a : b=3:4, then 4a :3b= (a) 4:3 (b) 3:4 (c) 1:1 (d) None of these

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |