Home
Class 12
MATHS
If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, th...

If `I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx`, then

A

`I(m,n)=int_(0)^(oo) (x^(m-1))/((1+x)^(m-n))dx`

B

`I(m,n)=int_(0)^(oo) (x^(m))/((1+x)^(m+n))dx`

C

`I(m,n)=int_(0)^(oo) (x^(n-1))/((1+x)^(m+n))dx`

D

`I(m,n)=int_(0)^(oo)(x^(n))/((1+x)^(m+n))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, dx \), we will use a substitution method to transform the integral into a more manageable form. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \frac{1}{1+y} \). Then, we need to find \( dx \) in terms of \( dy \). \[ dx = -\frac{1}{(1+y)^2} \, dy \] When \( x = 0 \), \( y \to \infty \) and when \( x = 1 \), \( y = 0 \). 2. **Change of Limits**: The integral changes from: \[ I(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, dx \quad \text{to} \quad I(m,n) = \int_\infty^0 \left( \frac{1}{1+y} \right)^{m-1} \left( 1 - \frac{1}{1+y} \right)^{n-1} \left(-\frac{1}{(1+y)^2}\right) dy \] 3. **Simplifying the Integral**: The expression \( 1 - \frac{1}{1+y} = \frac{y}{1+y} \) leads to: \[ I(m,n) = \int_\infty^0 \left( \frac{1}{1+y} \right)^{m-1} \left( \frac{y}{1+y} \right)^{n-1} \left(-\frac{1}{(1+y)^2}\right) dy \] This simplifies to: \[ I(m,n) = \int_0^\infty \frac{y^{n-1}}{(1+y)^{m+n}} \, dy \] 4. **Final Form**: The integral now has the form: \[ I(m,n) = \int_0^\infty \frac{y^{n-1}}{(1+y)^{m+n}} \, dy \] 5. **Conclusion**: Thus, we find that: \[ I(m,n) = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} \, dx \] ### Final Answer: The correct expression for \( I(m,n) \) is: \[ I(m,n) = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} \, dx \]

To solve the integral \( I(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} \, dx \), we will use a substitution method to transform the integral into a more manageable form. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \frac{1}{1+y} \). Then, we need to find \( dx \) in terms of \( dy \). \[ dx = -\frac{1}{(1+y)^2} \, dy \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(1)x^(m)(log_(e).(1)/(x))dx=

If I_(m)=int_(0)^(oo) e^(-x)x^(n-1)dx, "then" int_(0)^(oo) e^(-lambdax) x^(n-1)dx

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:The integral int_0^(pi/2) cos^(2m)theta sin^(2n)theta d theta= (A) 1/2beta(m+1/2,n+1/2) (B) 2beta(2m,2n) (C) beta(2m+1,2n+1) (D) none of these

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^2 (8-x^3)^((-1)/3)dx=kbeta(1/3,2/3) , then k equals to (A) 1 (B) 1/2 (C) 1/3 (D) 1/4

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |