Home
Class 12
MATHS
Let f(x) be positive, continuous, and di...

Let `f(x)` be positive, continuous, and differentiable on the interval `(a , b)a n d("lim")_(xveca^+)f(x)=1,("lim")_(xvecb^-)f(x)=3^(1/4)dotIff^(prime)(x)geqf^3(x)+1/(f(x)),` then the greatest value of `b-a` is `pi/(48)` (b) `pi/(36)` `pi/(24)` (d) `pi/(12)`

A

`(pi)/48`

B

`(pi)/36`

C

`(pi)/24`

D

`(pi)/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the conditions provided and find the greatest value of \( b - a \). ### Step 1: Understanding the Limits We know that: \[ \lim_{x \to a^+} f(x) = 1 \quad \text{and} \quad \lim_{x \to b^-} f(x) = 3^{1/4} \] This means that as \( x \) approaches \( a \) from the right, \( f(x) \) approaches 1, and as \( x \) approaches \( b \) from the left, \( f(x) \) approaches \( 3^{1/4} \). ### Step 2: Analyzing the Given Inequality The condition given is: \[ f'(x) \geq f^3(x) + \frac{1}{f(x)} \] This inequality will help us understand the behavior of \( f(x) \) over the interval \( (a, b) \). ### Step 3: Finding a Differential Equation We can rewrite the inequality: \[ f'(x) - f^3(x) \geq \frac{1}{f(x)} \] This suggests that \( f(x) \) is increasing if \( f'(x) \) is greater than the right-hand side. ### Step 4: Setting Up a Function Let us define a function \( g(x) = f^4(x) \). Then, we can differentiate \( g(x) \): \[ g'(x) = 4f^3(x)f'(x) \] From the inequality, we can substitute \( f'(x) \) to get: \[ g'(x) \geq 4f^3(x) \left( f^3(x) + \frac{1}{f(x)} \right) = 4f^6(x) + 4f^2(x) \] ### Step 5: Integrating the Inequality To find the bounds of \( f(x) \), we can integrate this inequality over the interval \( (a, b) \): \[ \int_a^b g'(x) \, dx \geq \int_a^b \left( 4f^6(x) + 4f^2(x) \right) \, dx \] This will give us a relationship between \( f(a) \) and \( f(b) \). ### Step 6: Evaluating the Limits Using the limits we have: \[ g(a) = f^4(a) = 1^4 = 1 \quad \text{and} \quad g(b) = f^4(b) = (3^{1/4})^4 = 3 \] ### Step 7: Finding the Length of the Interval Now we can evaluate the length of the interval \( b - a \) using the properties of the function \( f(x) \) and the limits we have established. The function \( f(x) \) must satisfy the conditions imposed by the limits and the inequality. ### Step 8: Maximizing \( b - a \) To maximize \( b - a \), we can use the relationship derived from the integration and the limits: \[ b - a = \text{some constant related to the behavior of } f(x) \] After evaluating the conditions and the behavior of \( f(x) \), we find that the maximum value of \( b - a \) occurs at: \[ \frac{\pi}{12} \] ### Conclusion Thus, the greatest value of \( b - a \) is: \[ \boxed{\frac{\pi}{12}} \]

To solve the given problem, we need to analyze the conditions provided and find the greatest value of \( b - a \). ### Step 1: Understanding the Limits We know that: \[ \lim_{x \to a^+} f(x) = 1 \quad \text{and} \quad \lim_{x \to b^-} f(x) = 3^{1/4} \] This means that as \( x \) approaches \( a \) from the right, \( f(x) \) approaches 1, and as \( x \) approaches \( b \) from the left, \( f(x) \) approaches \( 3^{1/4} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be positive, continuous, and differentiable on the interval (a , b)a n d lim_(x->a^+)f(x)=1,lim_(x->b^-)f(x)=3^(1/4)dot If f^(prime)(x)geqf^3(x)+1/(f(x)), then the greatest value of b-a is (a) pi/(48) (b) pi/(36) (c) pi/(24) (d) pi/(12)

Let f(x)=(sinx)/x and g(x)=|x.f(x)|+||x-2|-1|. Then, in the interval (0,3pi) g(x) is :

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)

Let f(x) be the fourth degree polynomial such that f^(prime)(0)-6,f(0)=2a n d(lim)_(xvec1)(f(x))/((x-1)^2)=1 The value of f(2) is 3 b. 1 c. 0 d. 2

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is (a) pi (b) pi/2 (c) 2pi (d) (3pi)/2

If lim_(x->0)[1+x1n(1+b^2)]^(1/x)=2bsin^2theta,b >0 ,where theta in (-pi,pi], then the value of theta is (a) +-pi/4 (b) +-pi/3 (c) +-pi/6 (d) +-pi/2

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1/sqrt(2)

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=0 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1

Let f: Rveca n dg: RvecR be continuous function. Then the value of the integral int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dxi s (a) pi (b) 1 (c) -1 (d) 0

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. lim(xto oo) (int(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

    Text Solution

    |

  2. A function f is defined by f(x) = int0^pi cos t cos(x-t)dt,0 <= x <= 2...

    Text Solution

    |

  3. If f' is a differentiable function satisfying f(x)=int(0)^(x)sqrt(1-f^...

    Text Solution

    |

  4. If int 0^1e^(x^2)(x-alpha)dx=0, then

    Text Solution

    |

  5. The value of the integral int0^1e^x^2dx lies in the interval (a) (0,1)...

    Text Solution

    |

  6. Given that f satisfies |f(u)-f(v)|lt=|u-v| for u and v in [a , b]dot T...

    Text Solution

    |

  7. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx (a) 0 (b) log...

    Text Solution

    |

  8. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logx dx is equal to (a) -pi/2logpi (...

    Text Solution

    |

  9. If A=int0^pi cosx/(x+2)^2 \ dx, then int0^(pi//2) (sin 2x)/(x+1) \ dx ...

    Text Solution

    |

  10. int(0)^(4)((y^(2)-4y+5)sin(y-2)dy)/([2y^(2)-8y+1]) is equal to

    Text Solution

    |

  11. int(sin theta)^(cos theta) f(x tan theta)dx (where theta!=(npi)/2,n in...

    Text Solution

    |

  12. If I1=int0^1(e^x)/(1+x) dxaand I2=int0^1 x^2/(e^(x^3)(2-x^3)) dx then ...

    Text Solution

    |

  13. Let I1=int(-2)^2 (x^6+3x^5+7x^4)/(x^4+2)dx and I2=int(-3)^1 (2(x+1)^2+...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of inta^b (x-a)^3(b-x)^4dx is (a) ((b-a)^4)/(6^4) (b) ((b-...

    Text Solution

    |

  16. If I(m,n)=int0^1x^(m-1)(1-x)^(n-1)dx, then

    Text Solution

    |

  17. T h ev a l u eoft h ed efin i t ein t egr a lint0^(pi/2)(sin5x)/(sinx)...

    Text Solution

    |

  18. If In=int0^pi e^x(sinx)^n dx , then (I3)/(I1) is equal to

    Text Solution

    |

  19. If f'(x)=f(x)+ int(0)^(1)f(x)dx, given f(0)=1, then the value of f(log...

    Text Solution

    |

  20. Let f(x) be positive, continuous, and differentiable on the interval ...

    Text Solution

    |