Home
Class 12
MATHS
If A=[{:(1,5),(7,12):}] and B=[{:(9,1),(...

If `A=[{:(1,5),(7,12):}]` and `B=[{:(9,1),( 7,8):}]` then find a matrix C such that `3A+5B+2C` is a null matrix.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a matrix \( C \) such that \( 3A + 5B + 2C \) is a null matrix (i.e., a matrix with all elements equal to zero). Given: - \( A = \begin{pmatrix} 1 & 5 \\ 7 & 12 \end{pmatrix} \) - \( B = \begin{pmatrix} 9 & 1 \\ 7 & 8 \end{pmatrix} \) We will follow these steps: ### Step 1: Calculate \( 3A \) We multiply matrix \( A \) by 3: \[ 3A = 3 \times \begin{pmatrix} 1 & 5 \\ 7 & 12 \end{pmatrix} = \begin{pmatrix} 3 \times 1 & 3 \times 5 \\ 3 \times 7 & 3 \times 12 \end{pmatrix} = \begin{pmatrix} 3 & 15 \\ 21 & 36 \end{pmatrix} \] ### Step 2: Calculate \( 5B \) Next, we multiply matrix \( B \) by 5: \[ 5B = 5 \times \begin{pmatrix} 9 & 1 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 5 \times 9 & 5 \times 1 \\ 5 \times 7 & 5 \times 8 \end{pmatrix} = \begin{pmatrix} 45 & 5 \\ 35 & 40 \end{pmatrix} \] ### Step 3: Add \( 3A \) and \( 5B \) Now, we add the results from Step 1 and Step 2: \[ 3A + 5B = \begin{pmatrix} 3 & 15 \\ 21 & 36 \end{pmatrix} + \begin{pmatrix} 45 & 5 \\ 35 & 40 \end{pmatrix} = \begin{pmatrix} 3 + 45 & 15 + 5 \\ 21 + 35 & 36 + 40 \end{pmatrix} = \begin{pmatrix} 48 & 20 \\ 56 & 76 \end{pmatrix} \] ### Step 4: Set up the equation We need to find \( C \) such that: \[ 3A + 5B + 2C = 0 \] This can be rearranged to: \[ 2C = - (3A + 5B) = -\begin{pmatrix} 48 & 20 \\ 56 & 76 \end{pmatrix} = \begin{pmatrix} -48 & -20 \\ -56 & -76 \end{pmatrix} \] ### Step 5: Solve for \( C \) Now we divide each element by 2 to find \( C \): \[ C = \frac{1}{2} \begin{pmatrix} -48 & -20 \\ -56 & -76 \end{pmatrix} = \begin{pmatrix} -24 & -10 \\ -28 & -38 \end{pmatrix} \] ### Final Answer Thus, the matrix \( C \) is: \[ C = \begin{pmatrix} -24 & -10 \\ -28 & -38 \end{pmatrix} \]

To solve the problem, we need to find a matrix \( C \) such that \( 3A + 5B + 2C \) is a null matrix (i.e., a matrix with all elements equal to zero). Given: - \( A = \begin{pmatrix} 1 & 5 \\ 7 & 12 \end{pmatrix} \) - \( B = \begin{pmatrix} 9 & 1 \\ 7 & 8 \end{pmatrix} \) We will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.3|10 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C such that 2A-B+3c is a unit matrix.

if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}] then find a matrix C if 2A+3B -4C is a zero matrix.

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A=[9 1 7 8] , B=[1 5 7 12] , find matrix C such that 5A+3B+2C is a null matrix.

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.

If B and C are two matrices such that B=[{:(,1,3),(,-2,0):}] and C=[{:(,17,7),(,-4,-8):}] , find the matrix M so that BM=C.