Home
Class 12
MATHS
Solve the following equations for X and ...

Solve the following equations for X and Y :
`2X-Y=[(3,-3,0),(3,3,2)], 2Y+X=[(4,1,5),(-1,4,-4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations for matrices \(X\) and \(Y\), we have the following equations: 1. \(2X - Y = \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix}\) 2. \(2Y + X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix}\) ### Step 1: Multiply the first equation by 2 We start by multiplying the entire first equation by 2 to facilitate elimination: \[ 4X - 2Y = \begin{pmatrix} 6 & -6 & 0 \\ 6 & 6 & 4 \end{pmatrix} \] ### Step 2: Rewrite the second equation The second equation remains as it is: \[ X + 2Y = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \] ### Step 3: Add the two equations Now, we add the modified first equation and the second equation: \[ (4X - 2Y) + (X + 2Y) = \begin{pmatrix} 6 & -6 & 0 \\ 6 & 6 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \] This simplifies to: \[ 5X = \begin{pmatrix} 6 + 4 & -6 + 1 & 0 + 5 \\ 6 - 1 & 6 + 4 & 4 - 4 \end{pmatrix} \] Calculating the right-hand side gives: \[ 5X = \begin{pmatrix} 10 & -5 & 5 \\ 5 & 10 & 0 \end{pmatrix} \] ### Step 4: Solve for \(X\) Now, divide both sides by 5 to find \(X\): \[ X = \frac{1}{5} \begin{pmatrix} 10 & -5 & 5 \\ 5 & 10 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \] ### Step 5: Substitute \(X\) back into the second equation Now we substitute \(X\) back into the second equation to find \(Y\): \[ 2Y + \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} \] ### Step 6: Rearrange to solve for \(Y\) Rearranging gives: \[ 2Y = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix} - \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \] Calculating the right-hand side: \[ 2Y = \begin{pmatrix} 4 - 2 & 1 + 1 & 5 - 1 \\ -1 - 1 & 4 - 2 & -4 - 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 4 \\ -2 & 2 & -4 \end{pmatrix} \] ### Step 7: Solve for \(Y\) Now, divide both sides by 2: \[ Y = \frac{1}{2} \begin{pmatrix} 2 & 2 & 4 \\ -2 & 2 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & -2 \end{pmatrix} \] ### Final Result Thus, the solutions for the matrices \(X\) and \(Y\) are: \[ X = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & -2 \end{pmatrix} \]

To solve the equations for matrices \(X\) and \(Y\), we have the following equations: 1. \(2X - Y = \begin{pmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{pmatrix}\) 2. \(2Y + X = \begin{pmatrix} 4 & 1 & 5 \\ -1 & 4 & -4 \end{pmatrix}\) ### Step 1: Multiply the first equation by 2 We start by multiplying the entire first equation by 2 to facilitate elimination: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.3|10 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If X and Y are 2xx2 matrices, then solve the following matrix equations for X and Y 2X+3Y=[[2,3],[4,0]],3X+2Y=[[-2,2],[1,-5]]

If X and Y are 2xx2 matrices, then solve the following matrix equations for X and Ydot 2X+3Y=[2 3 4 0] , 3X+2Y=[-2 2 1-5]

If X and Y are 2xx2 matrices, then solve the following matrix equations for X and Ydot 2X+3Y=[2 3 4 0] , 3X+2Y=[-2 2 1-5]

Solve the following system of equations: x+y/2=4,\ \ \ x/3+2y=5

Solve the following system of equations graphically: x+y=4;\ \ \ 2x-3y=3

Solve the given equations graphically. 3x-2y=4 and 5x-2y=0

Find x and y from the following equations: (i) [{:(,5,2),(,-1,y-1):}]-[{:(,1,x-1),(,2,-3):}] =[{:(,4,7),(,-3,2):}] (ii) [-8,x]+[y-2]=[-3,2]

Solve the following system of equations: 2/x+3/y=13 ,\ \ \ \ \ 5/x-4/y=-2

Solve the following equations for x and y: log_10x+log_10(x)^(1/2)+log_10(x)^(1/4)+….=y (1+3+5+…+(2y-1))/(4+7+10+..+(3y+1))=20/(7log_10x)

Solve the following differential equations. 2(x-3y+1)(dy)/(dx)=(4x-2y+1)