Home
Class 12
MATHS
If A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2)...

If `A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)]` and `C=[(-1,-2,-2),(2,1,2),(2,2,3)]` then find the value of tr. `(A+B^(T)+3C)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \text{tr}(A + B^T + 3C) \), we will follow these steps: ### Step 1: Write down the matrices Given: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 2 \\ -2 & -1 & -2 \\ 2 & 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix} \] ### Step 2: Calculate the transpose of matrix \( B \) The transpose of matrix \( B \), denoted \( B^T \), is obtained by swapping rows and columns: \[ B^T = \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3 \end{pmatrix} \] ### Step 3: Calculate \( 3C \) To find \( 3C \), we multiply each element of matrix \( C \) by 3: \[ 3C = 3 \times \begin{pmatrix} -1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix} = \begin{pmatrix} -3 & -6 & -6 \\ 6 & 3 & 6 \\ 6 & 6 & 9 \end{pmatrix} \] ### Step 4: Add the matrices \( A \), \( B^T \), and \( 3C \) Now we will add the matrices \( A \), \( B^T \), and \( 3C \): \[ A + B^T + 3C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix} + \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3 \end{pmatrix} + \begin{pmatrix} -3 & -6 & -6 \\ 6 & 3 & 6 \\ 6 & 6 & 9 \end{pmatrix} \] Calculating the sum element-wise: \[ = \begin{pmatrix} 1 + 1 - 3 & 2 - 2 - 6 & 3 + 2 - 6 \\ 2 + 2 + 6 & 1 - 1 + 3 & 2 + 2 + 6 \\ 2 + 2 + 6 & 2 - 2 + 6 & 3 + 3 + 9 \end{pmatrix} \] \[ = \begin{pmatrix} -1 & -6 & -1 \\ 10 & 3 & 10 \\ 10 & 6 & 15 \end{pmatrix} \] ### Step 5: Calculate the trace of the resulting matrix The trace of a matrix is the sum of the diagonal elements. For the matrix we obtained: \[ \text{tr}(A + B^T + 3C) = -1 + 3 + 15 = 17 \] ### Final Answer Thus, the value of \( \text{tr}(A + B^T + 3C) \) is: \[ \boxed{17} \]

To find the value of \( \text{tr}(A + B^T + 3C) \), we will follow these steps: ### Step 1: Write down the matrices Given: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 2 \\ -2 & -1 & -2 \\ 2 & 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.3|10 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.

If A=[[-1,-1,3],[1,2,4],[2,-1,3]],B=[[1,-2,5],[0,-2,2],[1,2,-3]],C=[[-2,1,2],[1,1,2],[2,0,1]] then find A+B+C

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(,5,0),(,7,3):}] find the values of a,b and c.

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .