Home
Class 12
MATHS
If A=[(3,-2),(4,-1)], then find all the ...

If `A=[(3,-2),(4,-1)]`, then find all the possible values of `lambda` such that the matrix `(A-lambdaI)` is singular.

Text Solution

AI Generated Solution

The correct Answer is:
To find all possible values of \( \lambda \) such that the matrix \( A - \lambda I \) is singular, we follow these steps: ### Step 1: Define the given matrix and identity matrix Let \( A = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} \) and the identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). ### Step 2: Formulate \( A - \lambda I \) We subtract \( \lambda I \) from \( A \): \[ A - \lambda I = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & -2 \\ 4 & -1 - \lambda \end{pmatrix} \] ### Step 3: Set the determinant to zero For the matrix to be singular, its determinant must be zero: \[ \text{det}(A - \lambda I) = 0 \] ### Step 4: Calculate the determinant The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). Thus, we compute: \[ \text{det}(A - \lambda I) = (3 - \lambda)(-1 - \lambda) - (-2)(4) \] Expanding this: \[ = (3 - \lambda)(-1 - \lambda) + 8 \] \[ = -3 - 3\lambda + \lambda + \lambda^2 + 8 \] \[ = \lambda^2 - 2\lambda + 5 \] ### Step 5: Set the determinant equal to zero Now we set the determinant equal to zero: \[ \lambda^2 - 2\lambda + 5 = 0 \] ### Step 6: Use the quadratic formula To solve for \( \lambda \), we apply the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -2 \), and \( c = 5 \): \[ \lambda = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} \] \[ = \frac{2 \pm \sqrt{4 - 20}}{2} \] \[ = \frac{2 \pm \sqrt{-16}}{2} \] \[ = \frac{2 \pm 4i}{2} \] \[ = 1 \pm 2i \] ### Step 7: Conclusion Thus, the possible values of \( \lambda \) such that the matrix \( A - \lambda I \) is singular are: \[ \lambda = 1 + 2i \quad \text{and} \quad \lambda = 1 - 2i \] ---

To find all possible values of \( \lambda \) such that the matrix \( A - \lambda I \) is singular, we follow these steps: ### Step 1: Define the given matrix and identity matrix Let \( A = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} \) and the identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). ### Step 2: Formulate \( A - \lambda I \) We subtract \( \lambda I \) from \( A \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.3|10 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Find all the possible values of 1/x for x>3 .

Find all possible values of sqrt(|x|-2) .

If (2 cos 2A-1) (tan 3A-1)= 0 , find all possible values of A

The possible values of scalar k such that the matrix A^(-1)-kI is singular where A = [(1,0,2),(0,2,1),(1,0,0)] , are

Find all the possible values of the expression: 1/(x^2+2)

If A=[(3,-2),( 4,-2)] , find the value of lambda so that A^2=lambdaA-2Idot Hence, find A^(-1) .

Find all possible values of (x^2+1)/(x^2-2) .

Find all possible values of (x^2+1)/(x^2-2) .

Find all the possible values of the expression sqrt(x^2-4) .

Find all the possible values of f(x) =(1-x^2)/(x^2+3)