Home
Class 12
MATHS
If matrix A=[(0,1,-1),(4,-3,4),(3,-3,4)]...

If matrix `A=[(0,1,-1),(4,-3,4),(3,-3,4)]=B+C`, where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C.

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrices \( B \) and \( C \) such that \( A = B + C \), where \( B \) is a symmetric matrix and \( C \) is a skew-symmetric matrix, we can follow these steps: ### Step 1: Write down the given matrix \( A \) Given: \[ A = \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{pmatrix} \] ### Step 2: Find the transpose of matrix \( A \) The transpose of matrix \( A \), denoted \( A^T \), is obtained by swapping the rows and columns: \[ A^T = \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix} \] ### Step 3: Calculate the symmetric matrix \( B \) The symmetric matrix \( B \) can be calculated using the formula: \[ B = \frac{1}{2}(A + A^T) \] Substituting the values of \( A \) and \( A^T \): \[ B = \frac{1}{2} \left( \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix} \right) \] Calculating the sum: \[ A + A^T = \begin{pmatrix} 0 + 0 & 1 + 4 & -1 + 3 \\ 4 + 1 & -3 - 3 & 4 - 3 \\ 3 - 1 & -3 + 4 & 4 + 4 \end{pmatrix} = \begin{pmatrix} 0 & 5 & 2 \\ 5 & -6 & 1 \\ 2 & 1 & 8 \end{pmatrix} \] Now, divide by 2: \[ B = \frac{1}{2} \begin{pmatrix} 0 & 5 & 2 \\ 5 & -6 & 1 \\ 2 & 1 & 8 \end{pmatrix} = \begin{pmatrix} 0 & \frac{5}{2} & 1 \\ \frac{5}{2} & -3 & \frac{1}{2} \\ 1 & \frac{1}{2} & 4 \end{pmatrix} \] ### Step 4: Calculate the skew-symmetric matrix \( C \) The skew-symmetric matrix \( C \) can be calculated using the formula: \[ C = \frac{1}{2}(A - A^T) \] Substituting the values of \( A \) and \( A^T \): \[ C = \frac{1}{2} \left( \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{pmatrix} - \begin{pmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{pmatrix} \right) \] Calculating the difference: \[ A - A^T = \begin{pmatrix} 0 - 0 & 1 - 4 & -1 - 3 \\ 4 - 1 & -3 + 3 & 4 + 3 \\ 3 + 1 & -3 - 4 & 4 - 4 \end{pmatrix} = \begin{pmatrix} 0 & -3 & -4 \\ 3 & 0 & 7 \\ 4 & -7 & 0 \end{pmatrix} \] Now, divide by 2: \[ C = \frac{1}{2} \begin{pmatrix} 0 & -3 & -4 \\ 3 & 0 & 7 \\ 4 & -7 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{3}{2} & -2 \\ \frac{3}{2} & 0 & \frac{7}{2} \\ 2 & -\frac{7}{2} & 0 \end{pmatrix} \] ### Final Result Thus, the matrices \( B \) and \( C \) are: \[ B = \begin{pmatrix} 0 & \frac{5}{2} & 1 \\ \frac{5}{2} & -3 & \frac{1}{2} \\ 1 & \frac{1}{2} & 4 \end{pmatrix} \] \[ C = \begin{pmatrix} 0 & -\frac{3}{2} & -2 \\ \frac{3}{2} & 0 & \frac{7}{2} \\ 2 & -\frac{7}{2} & 0 \end{pmatrix} \]

To find the matrices \( B \) and \( C \) such that \( A = B + C \), where \( B \) is a symmetric matrix and \( C \) is a skew-symmetric matrix, we can follow these steps: ### Step 1: Write down the given matrix \( A \) Given: \[ A = \begin{pmatrix} 0 & 1 & -1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.3|10 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[(1, 2),( 0, 3)] is written as B+C , where B is a symmetric matrix and C is a skew-symmetric matrix, then find Bdot

If Ais symmetric and B is skew-symmetric matrix, then which of the following is/are CORRECT ?

Express the matrix A=[(2,4,-6),(7,3,5),(1,-2,4)] is the sum of a symmetric and skew symmetric matrix.

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

Express the matrix A = [{:(4, 2,-1),(3,5,7),(1,-2,1):} ] as the sum of a symmetric and a skew-symmetric matrix.

If [(3,5),(7,9)] is written as A + B, where A is the skew-symmetric matrix and B is the symmetric matrix, then write the matrix A.

Expess the matrix A=[{:(2,0,-4),(-3,1,5),(4,-2,3):}] as a sum of symmetic and skew symmetric matrices.

Express the matrix A=|(3, 2 ,3),(4,5 ,3),( 2, 4,5)| as the sum of a symmetric and a skew-symmetric matrix.

If A=(3 5 7 9) is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

The matrix A=[{:(1,0,0),(0,2,0),(0,0,3):}] is: a) scalar matrix b) symmetric matrix c) skew symmetric matrix d) none f these