Home
Class 12
MATHS
The matrix R(t) is defined by R(t)=[(cos...

The matrix R(t) is defined by `R(t)=[(cos t,sin t),(-sin t,cos t)]`. Show that `R(s)R(t)=R(s+t)`.

Text Solution

AI Generated Solution

To show that \( R(s)R(t) = R(s+t) \), we start with the definitions of the matrices involved. ### Step 1: Define the matrices The matrices \( R(s) \) and \( R(t) \) are defined as follows: \[ R(s) = \begin{pmatrix} \cos s & \sin s \\ -\sin s & \cos s ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

x = "sin" t, y = "cos" 2t

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

Locus of centroid of the triangle whose vertices are (a cos t, a sin t ) , (b sin t - b cos t ) and (1, 0) where t is a parameter, is

The displacement vector of a particle of mass m is given by r (t) = hati A cos omega t + hatj B sin omega t . (a) Show that the trajectory is an ellipse. (b) Show that F = -m omega^(2)r .

The displacement vector of a particle of mass m is given by r (t) = hati A cos omega t + hatj B sin omega t . (a) Show that the trajectory is an ellipse. (b) Show that F = -m omega^(2)r .

Let A=B B^(T)+C C^(T) , where B=[(cos theta),(sin theta)], C=[(sin theta),(-cos theta)], theta in R . Then prove that a is unit matrix.

x=a(cos t + log tan (t/2)), y =a sin t

If x=a (cos t + t sin t) and y=a ( sin t- t cos t), find (d^(2)y)/(dx^(2))