Home
Class 12
MATHS
If A = [[1,2],[3,-5]] and B=[[1,0],[0,2]...

If `A = [[1,2],[3,-5]]` and `B=[[1,0],[0,2]]` and X is a matrix such that `A=BX`, then X=

Text Solution

AI Generated Solution

The correct Answer is:
To solve for the matrix \( X \) given that \( A = BX \), where \( A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix} \) and \( B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \), we will follow these steps: ### Step 1: Write the equation We start with the equation: \[ A = BX \] ### Step 2: Multiply both sides by \( B^{-1} \) To isolate \( X \), we multiply both sides of the equation by the inverse of \( B \): \[ B^{-1}A = B^{-1}BX \] Since \( B^{-1}B \) is the identity matrix \( I \), this simplifies to: \[ B^{-1}A = X \] ### Step 3: Find \( B^{-1} \) To find \( B^{-1} \), we first calculate the determinant of \( B \): \[ \text{det}(B) = (1)(2) - (0)(0) = 2 \] Next, we find the adjoint of \( B \). For a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), the adjoint is given by: \[ \text{adj}(B) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] Thus, for \( B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \): \[ \text{adj}(B) = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \] Now, we can find \( B^{-1} \) using the formula: \[ B^{-1} = \frac{1}{\text{det}(B)} \text{adj}(B) = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \] ### Step 4: Substitute \( B^{-1} \) and \( A \) into the equation for \( X \) Now we substitute \( B^{-1} \) and \( A \) into the equation \( X = B^{-1}A \): \[ X = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix} \] ### Step 5: Perform the matrix multiplication Now we perform the multiplication: \[ X = \begin{bmatrix} (1)(1) + (0)(3) & (1)(2) + (0)(-5) \\ (0)(1) + \left(\frac{1}{2}\right)(3) & (0)(2) + \left(\frac{1}{2}\right)(-5) \end{bmatrix} \] Calculating each element: - First row, first column: \( 1 \) - First row, second column: \( 2 \) - Second row, first column: \( \frac{3}{2} \) - Second row, second column: \( -\frac{5}{2} \) Thus, we have: \[ X = \begin{bmatrix} 1 & 2 \\ \frac{3}{2} & -\frac{5}{2} \end{bmatrix} \] ### Final Answer Therefore, the matrix \( X \) is: \[ X = \begin{bmatrix} 1 & 2 \\ \frac{3}{2} & -\frac{5}{2} \end{bmatrix} \]

To solve for the matrix \( X \) given that \( A = BX \), where \( A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix} \) and \( B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \), we will follow these steps: ### Step 1: Write the equation We start with the equation: \[ A = BX \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1, 2), (3,-5)] and B=[(1, 0), (0, 2)] and X be a matrix such that A=B X , then X is equal to (a) 1/2[(2, 4), (3, -5)] (b) 1/2[(-2, 4), (3, 5)] (c) [(2, 4), (3,-5)] (d) none of these

If A=[[2,3,4],[-3,0,2]], B=[[3,-4,-5],[1,2,1]] and C=[[5,-1,2],[7,0,3]] , find the matrix X such that 2A+3B=X+C

Given A=[[1,2,-3],[5,0,2],[1,-1,1]] and B=[[3,-1,2],[4,2,5],[2,0,3]] , find the matrix C such that A+C=B.

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

Find a 2x2 matrix B such that B[1-2 1 4]=[6 0 0 6]

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

If A=[2-2 4 2-5 1] , B=[8 0 4-2 3 6] , find matrix X such that 2A+3X=5B .

Given matrix A=[{:(,5),(,-3):}] and matrix B=[{:(,-1),(,7):}] find matrix X such that : A+2X=B.