Home
Class 12
MATHS
If A=[[costheta,sintheta],[-sintheta,cos...

`If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim_(x_>oo)1/nA^n` is

A

(A) an identity matrix

B

(B) [0 10 -1 0 ]

C

(C) a null matrix

D

(D) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the expression \( \lim_{n \to \infty} \frac{1}{n} A^n \) where \( A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \) by multiplying \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] Calculating the elements: - First row, first column: \( \cos^2 \theta + \sin^2 \theta = 1 \) - First row, second column: \( \cos \theta \sin \theta + \sin \theta \cos \theta = 2 \cos \theta \sin \theta \) - Second row, first column: \( -\sin \theta \cos \theta + \cos \theta \sin \theta = 0 \) - Second row, second column: \( -\sin^2 \theta + \cos^2 \theta = \cos(2\theta) \) Thus, we have: \[ A^2 = \begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ -\sin(2\theta) & \cos(2\theta) \end{pmatrix} \] ### Step 2: Generalize \( A^n \) By observing the pattern from \( A \) and \( A^2 \), we can generalize \( A^n \): \[ A^n = \begin{pmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{pmatrix} \] ### Step 3: Calculate \( \frac{1}{n} A^n \) Now, we compute \( \frac{1}{n} A^n \): \[ \frac{1}{n} A^n = \frac{1}{n} \begin{pmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{pmatrix} = \begin{pmatrix} \frac{\cos(n\theta)}{n} & \frac{\sin(n\theta)}{n} \\ -\frac{\sin(n\theta)}{n} & \frac{\cos(n\theta)}{n} \end{pmatrix} \] ### Step 4: Take the limit as \( n \to \infty \) Now we take the limit of each element as \( n \to \infty \): \[ \lim_{n \to \infty} \frac{1}{n} A^n = \begin{pmatrix} \lim_{n \to \infty} \frac{\cos(n\theta)}{n} & \lim_{n \to \infty} \frac{\sin(n\theta)}{n} \\ \lim_{n \to \infty} -\frac{\sin(n\theta)}{n} & \lim_{n \to \infty} \frac{\cos(n\theta)}{n} \end{pmatrix} \] Since both \( \cos(n\theta) \) and \( \sin(n\theta) \) are bounded between -1 and 1, we have: \[ \lim_{n \to \infty} \frac{\cos(n\theta)}{n} = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{\sin(n\theta)}{n} = 0 \] Thus, the limit becomes: \[ \lim_{n \to \infty} \frac{1}{n} A^n = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Final Result The final result is: \[ \lim_{n \to \infty} \frac{1}{n} A^n = \text{Zero Matrix} \]

To solve the problem, we need to find the limit of the expression \( \lim_{n \to \infty} \frac{1}{n} A^n \) where \( A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \) by multiplying \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[[costheta,-sintheta],[sintheta,costheta]] then show that A^n = [[cosntheta,-sinntheta],[sinntheta,cosntheta]]

If A=[[costheta,sintheta],[-sintheta,costheta]] , then for any natural number, find the value of D e t\ (A^n) .

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is

If cos theta-4sintheta=1, the sintheta+4costheta=

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=l is true for

If A=[(costheta,sintheta),(-sintheta,costheta)] , then find the value of |A| .

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

Statement 1: If A is an orthogonal matrix of order 2, then |A|=+-1. Statement 2: Every two-rowed real orthogonal matrix is of any one of the forms [[costheta ,-sintheta ],[sintheta ,costheta]]or[[costheta ,sintheta],[ sintheta,-costheta]]dot