Home
Class 12
MATHS
A=[(3,a,-1),(2,5,c),(b,8,2)] is symmetri...

`A=[(3,a,-1),(2,5,c),(b,8,2)]` is symmetric and `B=[(d,3,a),(b-a,e,-2b-c),(-2,6,-f)]` is skew-symmetric, then find AB.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of matrices \( A \) and \( B \) given that \( A \) is symmetric and \( B \) is skew-symmetric. ### Step 1: Determine the values of \( a, b, c, d, e, f \) **Matrix A:** Given: \[ A = \begin{pmatrix} 3 & a & -1 \\ 2 & 5 & c \\ b & 8 & 2 \end{pmatrix} \] Since \( A \) is symmetric, we have \( A^T = A \). Therefore: \[ \begin{pmatrix} 3 & 2 & b \\ a & 5 & 8 \\ -1 & c & 2 \end{pmatrix} = \begin{pmatrix} 3 & a & -1 \\ 2 & 5 & c \\ b & 8 & 2 \end{pmatrix} \] From this, we can equate the corresponding elements: 1. \( a = 2 \) 2. \( b = -1 \) 3. \( c = 8 \) **Matrix B:** Given: \[ B = \begin{pmatrix} d & 3 & a \\ b-a & e & -2b-c \\ -2 & 6 & -f \end{pmatrix} \] Since \( B \) is skew-symmetric, we have \( B^T = -B \). Therefore: \[ \begin{pmatrix} d & b-a & -2 \\ 3 & e & 6 \\ a & -2b-c & -f \end{pmatrix} = \begin{pmatrix} -d & -3 & -a \\ -(b-a) & -e & -6 \\ 2 & -(-2b-c) & -(-f) \end{pmatrix} \] From this, we can equate the corresponding elements: 1. \( d = 0 \) 2. \( e = 0 \) 3. \( f = 0 \) ### Step 2: Substitute the values into matrices A and B Now substituting the values we found into matrices \( A \) and \( B \): **Matrix A:** \[ A = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 5 & 8 \\ -1 & 8 & 2 \end{pmatrix} \] **Matrix B:** \[ B = \begin{pmatrix} 0 & 3 & 2 \\ -3 & 0 & -6 \\ -2 & 6 & 0 \end{pmatrix} \] ### Step 3: Calculate the product \( AB \) To find \( AB \), we multiply the two matrices: \[ AB = A \cdot B = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 5 & 8 \\ -1 & 8 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 3 & 2 \\ -3 & 0 & -6 \\ -2 & 6 & 0 \end{pmatrix} \] Calculating each element of the resulting matrix: 1. First row: - \( (3 \cdot 0) + (2 \cdot -3) + (-1 \cdot -2) = 0 - 6 + 2 = -4 \) - \( (3 \cdot 3) + (2 \cdot 0) + (-1 \cdot 6) = 9 + 0 - 6 = 3 \) - \( (3 \cdot 2) + (2 \cdot -6) + (-1 \cdot 0) = 6 - 12 + 0 = -6 \) 2. Second row: - \( (2 \cdot 0) + (5 \cdot -3) + (8 \cdot -2) = 0 - 15 - 16 = -31 \) - \( (2 \cdot 3) + (5 \cdot 0) + (8 \cdot 6) = 6 + 0 + 48 = 54 \) - \( (2 \cdot 2) + (5 \cdot -6) + (8 \cdot 0) = 4 - 30 + 0 = -26 \) 3. Third row: - \( (-1 \cdot 0) + (8 \cdot -3) + (2 \cdot -2) = 0 - 24 - 4 = -28 \) - \( (-1 \cdot 3) + (8 \cdot 0) + (2 \cdot 6) = -3 + 0 + 12 = 9 \) - \( (-1 \cdot 2) + (8 \cdot -6) + (2 \cdot 0) = -2 - 48 + 0 = -50 \) Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} -4 & 3 & -6 \\ -31 & 54 & -26 \\ -28 & 9 & -50 \end{pmatrix} \]

To solve the problem, we need to find the product of matrices \( A \) and \( B \) given that \( A \) is symmetric and \( B \) is skew-symmetric. ### Step 1: Determine the values of \( a, b, c, d, e, f \) **Matrix A:** Given: \[ A = \begin{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A={:[(a,2,3),(b,c,4),(d,e,f)]:} is skew symmetric matrix, then find a,b,c,d,e,f.

If matrix A=[(0,1,-1),(4,-3,4),(3,-3,4)]=B+C , where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C.

If the matrix A = [[0,a,-3],[2,0,-1],[b,1,0]] is skew symmetric, find the value of a and b .

If A=[(1, 2),( 0, 3)] is written as B+C , where B is a symmetric matrix and C is a skew-symmetric matrix, then find Bdot

If the matrix A=[[0,a,-3],[2,0,-1],[b,1,0]] is skew-symmetric, find the values of a ,\ b .

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

If A=[{:(0,a,1),(-1,b,1),(-1,c,0):}] is a skew-symmetric matrix, then the value of (a+b+c)^(2) is

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

The matrix A=[{:(1,0,0),(0,2,0),(0,0,3):}] is: a) scalar matrix b) symmetric matrix c) skew symmetric matrix d) none f these