Home
Class 12
MATHS
The equation [1 x y][(1,3,1),(0,2,-1),(...

The equation `[1 x y][(1,3,1),(0,2,-1),(0,0,1)] [(1),(x),(y)]=[0]` has
i) y=0 (p) rational roots
ii) y=-1 (q) irrational roots
(r) integral roots

A

`{:("(i)",(ii)),((p),"(r)"):}`

B

`{:("(i)",(ii)),((q),"(p)"):}`

C

`{:("(i)",(ii)),((p),"(q)"):}`

D

`{:("(i)",(ii)),((r),"(p)"):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given matrix equation \[ [1 \quad x \quad y] \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} = [0] \] we will analyze the cases for \( y = 0 \) and \( y = -1 \). ### Step 1: Substitute \( y = 0 \) Substituting \( y = 0 \) into the equation, we have: \[ [1 \quad x \quad 0] \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ 0 \end{pmatrix} = [0] \] ### Step 2: Multiply the matrices Now we will multiply the matrices: 1. First, calculate the product of the second matrix and the column matrix: \[ \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 3 \cdot x + 1 \cdot 0 \\ 0 \cdot 1 + 2 \cdot x - 1 \cdot 0 \\ 0 \cdot 1 + 0 \cdot x + 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} 1 + 3x \\ 2x \\ 0 \end{pmatrix} \] 2. Next, multiply the row matrix with the result: \[ [1 \quad x \quad 0] \begin{pmatrix} 1 + 3x \\ 2x \\ 0 \end{pmatrix} = 1(1 + 3x) + x(2x) + 0(0) = 1 + 3x + 2x^2 \] ### Step 3: Set the equation to zero Now we set the equation to zero: \[ 2x^2 + 3x + 1 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 2 \), \( b = 3 \), \( c = 1 \). Calculating the discriminant: \[ b^2 - 4ac = 3^2 - 4 \cdot 2 \cdot 1 = 9 - 8 = 1 \] Now substituting into the quadratic formula: \[ x = \frac{-3 \pm \sqrt{1}}{2 \cdot 2} = \frac{-3 \pm 1}{4} \] Calculating the roots: 1. \( x = \frac{-3 + 1}{4} = \frac{-2}{4} = -\frac{1}{2} \) 2. \( x = \frac{-3 - 1}{4} = \frac{-4}{4} = -1 \) ### Conclusion for \( y = 0 \) Both roots \( -\frac{1}{2} \) and \( -1 \) are rational numbers. Therefore, for \( y = 0 \), we have rational roots. ### Step 5: Substitute \( y = -1 \) Now, we substitute \( y = -1 \): \[ [1 \quad x \quad -1] \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ -1 \end{pmatrix} = [0] \] ### Step 6: Multiply the matrices again 1. First, calculate the product of the second matrix and the column matrix: \[ \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ -1 \end{pmatrix} = \begin{pmatrix} 1 + 3x - 1 \\ 2x + 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3x \\ 2x + 1 \\ 0 \end{pmatrix} \] 2. Next, multiply the row matrix with the result: \[ [1 \quad x \quad -1] \begin{pmatrix} 3x \\ 2x + 1 \\ 0 \end{pmatrix} = 1(3x) + x(2x + 1) - 1(0) = 3x + 2x^2 + x = 2x^2 + 4x \] ### Step 7: Set the equation to zero Setting the equation to zero: \[ 2x^2 + 4x = 0 \] ### Step 8: Factor the equation Factoring out \( 2x \): \[ 2x(x + 2) = 0 \] ### Step 9: Solve for \( x \) The solutions are: 1. \( 2x = 0 \) which gives \( x = 0 \) 2. \( x + 2 = 0 \) which gives \( x = -2 \) Both roots \( 0 \) and \( -2 \) are integral. ### Conclusion for \( y = -1 \) For \( y = -1 \), we have integral roots. ### Final Answer - For \( y = 0 \): Rational roots (p) - For \( y = -1 \): Integral roots (r)

To solve the given matrix equation \[ [1 \quad x \quad y] \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} = [0] \] we will analyze the cases for \( y = 0 \) and \( y = -1 \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0

If [(1,0,0),(0, 0, 1),(0,1,0)][(x),(y),(z)]=[(2),(-1),(3)] , find x ,\ y ,\ z .

Find x, y if [(-2,0),(3,1)][(-1),(2x)]+[(-2),(1)]=2[(y),(3)]

The roots of the equation det [(1-x, 2, 3),(0,2-x,0),(0,2,3-x)]=0 are (A) 1 and 2 (B) 1 and 3 (C) 2 and 3 (D) 1,2, and 3

Solve the equation |{:(x+2,1,-3),(1,x-3,-2),(-3,-2,1):}|=0.

The value of x so that [[1,x,1]][[1,3,2] , [0,5,1] , [0,3,2]][[1], [1], [x]]=0 is

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

If A is a square matrix of any order then |A-x|=0 is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if A=[(1,2),(1,5)], Then [(A-xI)], = [(1,2),(1,5)]-[(x,0),(0,x)]=[(1-x,2),(1-0,5-x)]=[(1-x,2),(1,5-x)] Characteristic equation of matrix A is |(1-x,2),(1,5-x)|=0 or (1-x)(5-x)(0-2)=0 or x^2-6x+3=0 Matrix A will satisfy this equation ie. A^2-6A+3I=0 . A^-1 can be determined by multiplying both sides of this equation. Let A=[(1,0,0),(0,1,1),(1,-2,4)] On the basis for above information answer the following questions:Sum of elements of A^-1 is (A) 2 (B) -2 (C) 6 (D) none of these

The equation [[1, 2 ,2 ],[1 ,3, 4],[ 2, 4,k]][[x ,y, z]] =[[0,0, 0]] has a solution for (x ,y ,z) besides (0,0,0)dot Then the value of k is _______.

The pair of equations x + 2y + 5 = 0 and -3x - 6y + 1 = 0 has

CENGAGE ENGLISH-MATRICES-Exercises
  1. Elements of a matrix A of order 10 x 10 are defined as a(ij)=omega^(i+...

    Text Solution

    |

  2. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  3. The equation [1 x y][(1,3,1),(0,2,-1),(0,0,1)] [(1),(x),(y)]=[0] has ...

    Text Solution

    |

  4. Let Aa n dB be two 2xx2 matrices. Consider the statements (i) A B=O =>...

    Text Solution

    |

  5. The number of diagonal matrix, A or ordern which A^3=A is a. is a a. 1...

    Text Solution

    |

  6. A is a 2xx2 matrix such that A[[1],[-1]]=[[-1],[ 2]] and A^2[[1],[-1]]...

    Text Solution

    |

  7. If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos...

    Text Solution

    |

  8. If A=[a b0a] is nth root of I2, then choose the correct statements: If...

    Text Solution

    |

  9. If [alphabetagamma-alpha] is to be square root of two-rowed unit matri...

    Text Solution

    |

  10. If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a.4B b...

    Text Solution

    |

  11. If [(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -10), (1, -2, -5), (9, 22, 15)]...

    Text Solution

    |

  12. For each real x, -1 lt x lt 1. Let A(x) be the matrix (1-x)^(-1) [(1,-...

    Text Solution

    |

  13. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  14. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  15. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  16. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  17. If [cos(2pi)/7-sin(2pi)/7sin(2pi)/7cos(2pi)/7]=[1 0 0 1] , then the le...

    Text Solution

    |

  18. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  19. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  20. Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the val...

    Text Solution

    |