Home
Class 12
MATHS
Let Aa n dB be two 2xx2 matrices. Consid...

Let `Aa n dB` be two `2xx2` matrices. Consider the statements (i) `A B=O => A=OorB=O` (ii)`A B=I_2 =>A=B^(-1)` (iii) `(A+B)^2=A^2+2A B+B^2` (a)(i) and (ii) are false, (iii) is true (b)(ii) and (iii) are false, (i) is true (c)(i) is false (ii) and, (iii) are true (d)(i) and (iii) are false, (ii) is true

A

(i) and (ii) are false, (iii) is true

B

(ii) and (iii) are false, (i) is true

C

(i) is false, (ii) and (iii) are true

D

(i) and (iii) are false, (ii) is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze each statement regarding the matrices \( A \) and \( B \) and determine their validity. Let's go through each statement step by step. ### Step 1: Analyze Statement (i) **Statement:** \( AB = O \Rightarrow A = O \text{ or } B = O \) **Analysis:** This statement claims that if the product of two matrices \( A \) and \( B \) is the zero matrix \( O \), then at least one of the matrices must be the zero matrix. **Counterexample:** Let: \[ A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \] Calculating \( AB \): \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq O \] Now let’s take: \[ A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] Calculating \( AB \): \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O \] In this case, \( A \neq O \) and \( B = O \). However, we can also find matrices \( A \) and \( B \) such that \( AB = O \) without either being zero. Therefore, statement (i) is **false**. ### Step 2: Analyze Statement (ii) **Statement:** \( AB = I_2 \Rightarrow A = B^{-1} \) **Analysis:** This statement asserts that if the product of two matrices \( A \) and \( B \) is the identity matrix \( I_2 \), then \( A \) must be the inverse of \( B \). **Verification:** By definition, if \( AB = I_2 \), then \( A \) is indeed the inverse of \( B \) (i.e., \( A = B^{-1} \)). Therefore, statement (ii) is **true**. ### Step 3: Analyze Statement (iii) **Statement:** \( (A + B)^2 = A^2 + 2AB + B^2 \) **Analysis:** This statement resembles the algebraic identity for the square of a binomial. However, matrix multiplication is not commutative, which means \( AB \neq BA \) in general. **Counterexample:** Let: \[ A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \] Calculating \( (A + B)^2 \): \[ A + B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \] \[ (A + B)^2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \] Now calculating \( A^2 + 2AB + B^2 \): \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \] Thus, \[ A^2 + 2AB + B^2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 2\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \] Since \( (A + B)^2 \neq A^2 + 2AB + B^2 \), statement (iii) is **false**. ### Conclusion From the analysis: - Statement (i) is false. - Statement (ii) is true. - Statement (iii) is false. Thus, the correct option is **(d)**: (i) and (iii) are false, (ii) is true.

To solve the problem, we need to analyze each statement regarding the matrices \( A \) and \( B \) and determine their validity. Let's go through each statement step by step. ### Step 1: Analyze Statement (i) **Statement:** \( AB = O \Rightarrow A = O \text{ or } B = O \) **Analysis:** This statement claims that if the product of two matrices \( A \) and \( B \) is the zero matrix \( O \), then at least one of the matrices must be the zero matrix. ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let A and B be two 2xx2 matrices. Consider the statements (i) A B=0 => A=0 or B=0 (ii) AB=I_2 => A=B^(-1) (a) only (i) (b) only (ii) (c) both are correct (d) none of these.

1 a(iii), b(ii), c(i), d(iv) 2 a(i), b(iv), c(i), d(iii) 3 a(iv), b(i), c(iii), d(iv) 4 a(ii), b(iii), c(iv), d(i)

In Figure, which of the following statements must be true? (i) a+b=d+c (ii) a+c+e=180^0 (iii) b+f=c+e (a) (i) only (b) (ii) only (c) (iii) only (d) (ii) and (iii) only

Evaluate : (i) (a+6b)^(2) " " (ii) (3x-4y)^(2) " " (iii) (2a-b+c)^(2)

Consider the following statements concerning a DeltaABC (i) The sides a,b,c and area of triangle are rational. (ii) a, "tan"(B)/(2),"tan"(C)/(2) (iii) a, sin A sin B, sin C are rational . Prove that (i) rArr(ii) rArr(iii)rArr(i)

If a=2 and b=-2, find the value of : (i) a^(2)+b^(2) (ii) a^(2)+ab+b^(2) (iii) a^(2)-b^(2)

Subtract : (i) -5y^2 from y^2 (ii) 6xy from (iii) (a-b) from (a+b)

Biodiversity loss occurs due to (i) habitat loss and fragmentation (ii) co-extinction (iii) over-exploitation (iv) alien species invasion. (a) (i) and (ii) (b) (i), (ii) and (iii) (c) (ii), (iii) and (iv) (d) (i), (ii), (iii) and (iv)

Expand the following (i) (4a-b+ac)^(2) (ii) (3a-5b-c)^(2) (iii) (-x+2y-3z)^(2)

Match Column - I with Column - II and select the CORRECT option form the codes given below (a) A - (iv) , B - (ii) , C - (i) , D - (iii) (b) A - (iii) , B - (ii) , C - (i) , D - (iv) (c) A - (iv) , B - (iii) , C - (i) , D - (ii) (d) A - (i) , B - (ii) , C - (iii) , D - (iv)

CENGAGE ENGLISH-MATRICES-Exercises
  1. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  2. The equation [1 x y][(1,3,1),(0,2,-1),(0,0,1)] [(1),(x),(y)]=[0] has ...

    Text Solution

    |

  3. Let Aa n dB be two 2xx2 matrices. Consider the statements (i) A B=O =>...

    Text Solution

    |

  4. The number of diagonal matrix, A or ordern which A^3=A is a. is a a. 1...

    Text Solution

    |

  5. A is a 2xx2 matrix such that A[[1],[-1]]=[[-1],[ 2]] and A^2[[1],[-1]]...

    Text Solution

    |

  6. If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos...

    Text Solution

    |

  7. If A=[a b0a] is nth root of I2, then choose the correct statements: If...

    Text Solution

    |

  8. If [alphabetagamma-alpha] is to be square root of two-rowed unit matri...

    Text Solution

    |

  9. If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a.4B b...

    Text Solution

    |

  10. If [(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -10), (1, -2, -5), (9, 22, 15)]...

    Text Solution

    |

  11. For each real x, -1 lt x lt 1. Let A(x) be the matrix (1-x)^(-1) [(1,-...

    Text Solution

    |

  12. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  13. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  14. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  15. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  16. If [cos(2pi)/7-sin(2pi)/7sin(2pi)/7cos(2pi)/7]=[1 0 0 1] , then the le...

    Text Solution

    |

  17. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  18. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  19. Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the val...

    Text Solution

    |

  20. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |