Home
Class 12
MATHS
If theta-phi=pi/2, prove that, [(cos^2 t...

If `theta-phi=pi/2,` prove that, `[(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0`

A

`2npi, in Z`

B

`n pi/2, n in Z`

C

`(2n+1) pi/2, n in X`

D

`npi, n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \begin{pmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{pmatrix} = 0 \] given that \(\theta - \phi = \frac{\pi}{2}\), we will follow these steps: ### Step 1: Define the Matrices Let \[ A = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \] and \[ B = \begin{pmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{pmatrix} \] ### Step 2: Multiply the Matrices To find the product \(AB\), we calculate each element of the resulting matrix: 1. **First Element**: \[ A_{11} = \cos^2 \theta \cdot \cos^2 \phi + \cos \theta \sin \theta \cdot \cos \phi \sin \phi \] 2. **Second Element**: \[ A_{12} = \cos^2 \theta \cdot \cos \phi \sin \phi + \cos \theta \sin \theta \cdot \sin^2 \phi \] 3. **Third Element**: \[ A_{21} = \cos \theta \sin \theta \cdot \cos^2 \phi + \sin^2 \theta \cdot \cos \phi \sin \phi \] 4. **Fourth Element**: \[ A_{22} = \cos \theta \sin \theta \cdot \cos \phi \sin \phi + \sin^2 \theta \cdot \sin^2 \phi \] ### Step 3: Simplifying Each Element Now we simplify each element: 1. For \(A_{11}\): \[ A_{11} = \cos^2 \theta \cos^2 \phi + \cos \theta \sin \theta \cos \phi \sin \phi = \cos^2 \theta \cos^2 \phi + \frac{1}{2} \sin(2\theta) \sin(2\phi) \] 2. For \(A_{12}\): \[ A_{12} = \cos^2 \theta \cos \phi \sin \phi + \sin^2 \theta \cos \phi \sin \phi = \cos \phi \sin \phi (\cos^2 \theta + \sin^2 \theta) = \cos \phi \sin \phi \] 3. For \(A_{21}\): \[ A_{21} = \cos \theta \sin \theta \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi = \sin \phi (\cos \theta \sin \theta \cos \phi + \sin^2 \theta) \] 4. For \(A_{22}\): \[ A_{22} = \cos \theta \sin \theta \cos \phi \sin \phi + \sin^2 \theta \sin^2 \phi = \sin^2 \phi (\cos \theta \sin \theta + \sin^2 \theta) \] ### Step 4: Factor Out Common Terms Notice that we can factor out common terms from each element: \[ AB = \begin{pmatrix} \cos^2 \theta \cos^2 \phi + \frac{1}{2} \sin(2\theta) \sin(2\phi) & \cos \phi \sin \phi \\ \sin \phi (\cos \theta \sin \theta \cos \phi + \sin^2 \theta) & \sin^2 \phi (\cos \theta \sin \theta + \sin^2 \theta) \end{pmatrix} \] ### Step 5: Use the Given Condition Since \(\theta - \phi = \frac{\pi}{2}\), we have: \[ \cos(\theta - \phi) = 0 \] This implies that the terms will simplify to zero, leading to the conclusion that \(AB = 0\). ### Conclusion Thus, we have shown that \[ AB = 0 \]

To prove that \[ \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \begin{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|49 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Flind the product of two matrices A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]] Show that, AB is the zero matrix if theta and phi differ by an odd multipl of pi/2 .

Prove that (cos theta+sin theta )^2 + (cos theta - sin theta )^2 =2

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

Prove that (1- cos theta + sin theta)/( 1+cos theta +sin theta) = "tan"(theta)/(2) .

Prove that : (cos 4theta + cos 3theta + cos 2theta)/(sin 4theta + sin 3theta + sin 2theta) = cot 3theta

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta

CENGAGE ENGLISH-MATRICES-Exercises
  1. The number of diagonal matrix, A or ordern which A^3=A is a. is a a. 1...

    Text Solution

    |

  2. A is a 2xx2 matrix such that A[[1],[-1]]=[[-1],[ 2]] and A^2[[1],[-1]]...

    Text Solution

    |

  3. If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos...

    Text Solution

    |

  4. If A=[a b0a] is nth root of I2, then choose the correct statements: If...

    Text Solution

    |

  5. If [alphabetagamma-alpha] is to be square root of two-rowed unit matri...

    Text Solution

    |

  6. If A=[[i,-i],[-i ,i]] and B=[[1,-1],[-1 ,1]], t hen ,A^8 equals a.4B b...

    Text Solution

    |

  7. If [(2,-1), (1, 0),(-3, 4)]A=[(-1, -8, -10), (1, -2, -5), (9, 22, 15)]...

    Text Solution

    |

  8. For each real x, -1 lt x lt 1. Let A(x) be the matrix (1-x)^(-1) [(1,-...

    Text Solution

    |

  9. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  10. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  11. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  12. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  13. If [cos(2pi)/7-sin(2pi)/7sin(2pi)/7cos(2pi)/7]=[1 0 0 1] , then the le...

    Text Solution

    |

  14. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  15. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  16. Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the val...

    Text Solution

    |

  17. If Z is an idempotent matrix, then (I+Z)^(n)

    Text Solution

    |

  18. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  19. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  20. If A is a non-diagonal involutory matrix, then

    Text Solution

    |